A New Smoothing Technique for Bang-Bang Optimal Control Problems

Bang-bang control is ubiquitous for Optimal Control Problems (OCPs) where the constrained control variable appears linearly in the dynamics and cost function. Based on the Pontryagin's Minimum Principle, the indirect method is widely used to numerically solve OCPs because it enables to derive t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-12
Hauptverfasser: Wang, Kun, Chen, Zheng, Wei, Zhenyu, Lu, Fangmin, Li, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wang, Kun
Chen, Zheng
Wei, Zhenyu
Lu, Fangmin
Li, Jun
description Bang-bang control is ubiquitous for Optimal Control Problems (OCPs) where the constrained control variable appears linearly in the dynamics and cost function. Based on the Pontryagin's Minimum Principle, the indirect method is widely used to numerically solve OCPs because it enables to derive the theoretical structure of the optimal control. However, discontinuities in the bang-bang control structure may result in numerical difficulties for gradient-based indirect method. In this case, smoothing or regularization procedures are usually applied to eliminating the discontinuities of bang-bang controls. Traditional smoothing or regularization procedures generally modify the cost function by adding a term depending on a small parameter, or introducing a small error into the state equation. Those procedures may complexify the numerical algorithms or degenerate the convergence performance. To overcome these issues, we propose a bounded smooth function, called normalized L2-norm function, to approximate the sign function in terms of the switching function. The resulting optimal control is smooth and can be readily embedded into the indirect method. Then, the simplicity and improved performance of the proposed method over some existing methods are numerically demonstrated by a minimal-time oscillator problem and a minimal-fuel low-thrust trajectory optimization problem that involves many revolutions.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2861994143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2861994143</sourcerecordid><originalsourceid>FETCH-proquest_journals_28619941433</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwcFTwSy1XCM7Nzy_JyMxLVwhJTc7IyywsTVVIyy9ScErMS9cFEQr-BSWZuYk5Cs75eSVF-TkKAUX5STmpucU8DKxpiTnFqbxQmptB2c01xNlDt6AoH2hKcUl8Vn5pUR5QKt7IwszQ0tLE0MTYmDhVAMbeOEs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861994143</pqid></control><display><type>article</type><title>A New Smoothing Technique for Bang-Bang Optimal Control Problems</title><source>Free E- Journals</source><creator>Wang, Kun ; Chen, Zheng ; Wei, Zhenyu ; Lu, Fangmin ; Li, Jun</creator><creatorcontrib>Wang, Kun ; Chen, Zheng ; Wei, Zhenyu ; Lu, Fangmin ; Li, Jun</creatorcontrib><description>Bang-bang control is ubiquitous for Optimal Control Problems (OCPs) where the constrained control variable appears linearly in the dynamics and cost function. Based on the Pontryagin's Minimum Principle, the indirect method is widely used to numerically solve OCPs because it enables to derive the theoretical structure of the optimal control. However, discontinuities in the bang-bang control structure may result in numerical difficulties for gradient-based indirect method. In this case, smoothing or regularization procedures are usually applied to eliminating the discontinuities of bang-bang controls. Traditional smoothing or regularization procedures generally modify the cost function by adding a term depending on a small parameter, or introducing a small error into the state equation. Those procedures may complexify the numerical algorithms or degenerate the convergence performance. To overcome these issues, we propose a bounded smooth function, called normalized L2-norm function, to approximate the sign function in terms of the switching function. The resulting optimal control is smooth and can be readily embedded into the indirect method. Then, the simplicity and improved performance of the proposed method over some existing methods are numerically demonstrated by a minimal-time oscillator problem and a minimal-fuel low-thrust trajectory optimization problem that involves many revolutions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Cost function ; Discontinuity ; Equations of state ; Numerical methods ; Optimal control ; Regularization ; Smoothing ; Trajectory optimization</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Wang, Kun</creatorcontrib><creatorcontrib>Chen, Zheng</creatorcontrib><creatorcontrib>Wei, Zhenyu</creatorcontrib><creatorcontrib>Lu, Fangmin</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><title>A New Smoothing Technique for Bang-Bang Optimal Control Problems</title><title>arXiv.org</title><description>Bang-bang control is ubiquitous for Optimal Control Problems (OCPs) where the constrained control variable appears linearly in the dynamics and cost function. Based on the Pontryagin's Minimum Principle, the indirect method is widely used to numerically solve OCPs because it enables to derive the theoretical structure of the optimal control. However, discontinuities in the bang-bang control structure may result in numerical difficulties for gradient-based indirect method. In this case, smoothing or regularization procedures are usually applied to eliminating the discontinuities of bang-bang controls. Traditional smoothing or regularization procedures generally modify the cost function by adding a term depending on a small parameter, or introducing a small error into the state equation. Those procedures may complexify the numerical algorithms or degenerate the convergence performance. To overcome these issues, we propose a bounded smooth function, called normalized L2-norm function, to approximate the sign function in terms of the switching function. The resulting optimal control is smooth and can be readily embedded into the indirect method. Then, the simplicity and improved performance of the proposed method over some existing methods are numerically demonstrated by a minimal-time oscillator problem and a minimal-fuel low-thrust trajectory optimization problem that involves many revolutions.</description><subject>Algorithms</subject><subject>Cost function</subject><subject>Discontinuity</subject><subject>Equations of state</subject><subject>Numerical methods</subject><subject>Optimal control</subject><subject>Regularization</subject><subject>Smoothing</subject><subject>Trajectory optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwcFTwSy1XCM7Nzy_JyMxLVwhJTc7IyywsTVVIyy9ScErMS9cFEQr-BSWZuYk5Cs75eSVF-TkKAUX5STmpucU8DKxpiTnFqbxQmptB2c01xNlDt6AoH2hKcUl8Vn5pUR5QKt7IwszQ0tLE0MTYmDhVAMbeOEs</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Wang, Kun</creator><creator>Chen, Zheng</creator><creator>Wei, Zhenyu</creator><creator>Lu, Fangmin</creator><creator>Li, Jun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231201</creationdate><title>A New Smoothing Technique for Bang-Bang Optimal Control Problems</title><author>Wang, Kun ; Chen, Zheng ; Wei, Zhenyu ; Lu, Fangmin ; Li, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28619941433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Cost function</topic><topic>Discontinuity</topic><topic>Equations of state</topic><topic>Numerical methods</topic><topic>Optimal control</topic><topic>Regularization</topic><topic>Smoothing</topic><topic>Trajectory optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kun</creatorcontrib><creatorcontrib>Chen, Zheng</creatorcontrib><creatorcontrib>Wei, Zhenyu</creatorcontrib><creatorcontrib>Lu, Fangmin</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kun</au><au>Chen, Zheng</au><au>Wei, Zhenyu</au><au>Lu, Fangmin</au><au>Li, Jun</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A New Smoothing Technique for Bang-Bang Optimal Control Problems</atitle><jtitle>arXiv.org</jtitle><date>2023-12-01</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Bang-bang control is ubiquitous for Optimal Control Problems (OCPs) where the constrained control variable appears linearly in the dynamics and cost function. Based on the Pontryagin's Minimum Principle, the indirect method is widely used to numerically solve OCPs because it enables to derive the theoretical structure of the optimal control. However, discontinuities in the bang-bang control structure may result in numerical difficulties for gradient-based indirect method. In this case, smoothing or regularization procedures are usually applied to eliminating the discontinuities of bang-bang controls. Traditional smoothing or regularization procedures generally modify the cost function by adding a term depending on a small parameter, or introducing a small error into the state equation. Those procedures may complexify the numerical algorithms or degenerate the convergence performance. To overcome these issues, we propose a bounded smooth function, called normalized L2-norm function, to approximate the sign function in terms of the switching function. The resulting optimal control is smooth and can be readily embedded into the indirect method. Then, the simplicity and improved performance of the proposed method over some existing methods are numerically demonstrated by a minimal-time oscillator problem and a minimal-fuel low-thrust trajectory optimization problem that involves many revolutions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2861994143
source Free E- Journals
subjects Algorithms
Cost function
Discontinuity
Equations of state
Numerical methods
Optimal control
Regularization
Smoothing
Trajectory optimization
title A New Smoothing Technique for Bang-Bang Optimal Control Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A06%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20New%20Smoothing%20Technique%20for%20Bang-Bang%20Optimal%20Control%20Problems&rft.jtitle=arXiv.org&rft.au=Wang,%20Kun&rft.date=2023-12-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2861994143%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2861994143&rft_id=info:pmid/&rfr_iscdi=true