Scaling Autoregressive Multi-Modal Models: Pretraining and Instruction Tuning
We present CM3Leon (pronounced "Chameleon"), a retrieval-augmented, token-based, decoder-only multi-modal language model capable of generating and infilling both text and images. CM3Leon uses the CM3 multi-modal architecture but additionally shows the extreme benefits of scaling up and tun...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-09 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Yu, Lili Bowen, Shi Pasunuru, Ramakanth Muller, Benjamin Golovneva, Olga Wang, Tianlu Babu, Arun Tang, Binh Karrer, Brian Sheynin, Shelly Ross, Candace Polyak, Adam Howes, Russell Sharma, Vasu Xu, Puxin Tamoyan, Hovhannes Oron Ashual Singer, Uriel Shang-Wen, Li Zhang, Susan James, Richard Ghosh, Gargi Taigman, Yaniv Fazel-Zarandi, Maryam Celikyilmaz, Asli Zettlemoyer, Luke Aghajanyan, Armen |
description | We present CM3Leon (pronounced "Chameleon"), a retrieval-augmented, token-based, decoder-only multi-modal language model capable of generating and infilling both text and images. CM3Leon uses the CM3 multi-modal architecture but additionally shows the extreme benefits of scaling up and tuning on more diverse instruction-style data. It is the first multi-modal model trained with a recipe adapted from text-only language models, including a large-scale retrieval-augmented pre-training stage and a second multi-task supervised fine-tuning (SFT) stage. It is also a general-purpose model that can do both text-to-image and image-to-text generation, allowing us to introduce self-contained contrastive decoding methods that produce high-quality outputs. Extensive experiments demonstrate that this recipe is highly effective for multi-modal models. CM3Leon achieves state-of-the-art performance in text-to-image generation with 5x less training compute than comparable methods (zero-shot MS-COCO FID of 4.88). After SFT, CM3Leon can also demonstrate unprecedented levels of controllability in tasks ranging from language-guided image editing to image-controlled generation and segmentation. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2861988673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2861988673</sourcerecordid><originalsourceid>FETCH-proquest_journals_28619886733</originalsourceid><addsrcrecordid>eNqNitEKgjAYRkcQJOU7DLoWdMu5uoso6kII8l6GLpmMrf5_6_lT6AG6OR-c7yxIwjgvMrljbEVSxDHPcyYqVpY8IfWjU9a4gR5j8KAH0Ijmo2kdbTBZ7Xtl6URt8UDvoAMo4-ZcuZ7eHAaIXTDe0SbOekOWT2VRp79dk-3l3Jyu2Qv8O2oM7egjuOlqmRTFXkpRcf5f9QW_Aj5P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861988673</pqid></control><display><type>article</type><title>Scaling Autoregressive Multi-Modal Models: Pretraining and Instruction Tuning</title><source>Free E- Journals</source><creator>Yu, Lili ; Bowen, Shi ; Pasunuru, Ramakanth ; Muller, Benjamin ; Golovneva, Olga ; Wang, Tianlu ; Babu, Arun ; Tang, Binh ; Karrer, Brian ; Sheynin, Shelly ; Ross, Candace ; Polyak, Adam ; Howes, Russell ; Sharma, Vasu ; Xu, Puxin ; Tamoyan, Hovhannes ; Oron Ashual ; Singer, Uriel ; Shang-Wen, Li ; Zhang, Susan ; James, Richard ; Ghosh, Gargi ; Taigman, Yaniv ; Fazel-Zarandi, Maryam ; Celikyilmaz, Asli ; Zettlemoyer, Luke ; Aghajanyan, Armen</creator><creatorcontrib>Yu, Lili ; Bowen, Shi ; Pasunuru, Ramakanth ; Muller, Benjamin ; Golovneva, Olga ; Wang, Tianlu ; Babu, Arun ; Tang, Binh ; Karrer, Brian ; Sheynin, Shelly ; Ross, Candace ; Polyak, Adam ; Howes, Russell ; Sharma, Vasu ; Xu, Puxin ; Tamoyan, Hovhannes ; Oron Ashual ; Singer, Uriel ; Shang-Wen, Li ; Zhang, Susan ; James, Richard ; Ghosh, Gargi ; Taigman, Yaniv ; Fazel-Zarandi, Maryam ; Celikyilmaz, Asli ; Zettlemoyer, Luke ; Aghajanyan, Armen</creatorcontrib><description>We present CM3Leon (pronounced "Chameleon"), a retrieval-augmented, token-based, decoder-only multi-modal language model capable of generating and infilling both text and images. CM3Leon uses the CM3 multi-modal architecture but additionally shows the extreme benefits of scaling up and tuning on more diverse instruction-style data. It is the first multi-modal model trained with a recipe adapted from text-only language models, including a large-scale retrieval-augmented pre-training stage and a second multi-task supervised fine-tuning (SFT) stage. It is also a general-purpose model that can do both text-to-image and image-to-text generation, allowing us to introduce self-contained contrastive decoding methods that produce high-quality outputs. Extensive experiments demonstrate that this recipe is highly effective for multi-modal models. CM3Leon achieves state-of-the-art performance in text-to-image generation with 5x less training compute than comparable methods (zero-shot MS-COCO FID of 4.88). After SFT, CM3Leon can also demonstrate unprecedented levels of controllability in tasks ranging from language-guided image editing to image-controlled generation and segmentation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Autoregressive models ; Decoding ; Image processing ; Image segmentation ; Production methods ; Retrieval ; Training</subject><ispartof>arXiv.org, 2023-09</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Yu, Lili</creatorcontrib><creatorcontrib>Bowen, Shi</creatorcontrib><creatorcontrib>Pasunuru, Ramakanth</creatorcontrib><creatorcontrib>Muller, Benjamin</creatorcontrib><creatorcontrib>Golovneva, Olga</creatorcontrib><creatorcontrib>Wang, Tianlu</creatorcontrib><creatorcontrib>Babu, Arun</creatorcontrib><creatorcontrib>Tang, Binh</creatorcontrib><creatorcontrib>Karrer, Brian</creatorcontrib><creatorcontrib>Sheynin, Shelly</creatorcontrib><creatorcontrib>Ross, Candace</creatorcontrib><creatorcontrib>Polyak, Adam</creatorcontrib><creatorcontrib>Howes, Russell</creatorcontrib><creatorcontrib>Sharma, Vasu</creatorcontrib><creatorcontrib>Xu, Puxin</creatorcontrib><creatorcontrib>Tamoyan, Hovhannes</creatorcontrib><creatorcontrib>Oron Ashual</creatorcontrib><creatorcontrib>Singer, Uriel</creatorcontrib><creatorcontrib>Shang-Wen, Li</creatorcontrib><creatorcontrib>Zhang, Susan</creatorcontrib><creatorcontrib>James, Richard</creatorcontrib><creatorcontrib>Ghosh, Gargi</creatorcontrib><creatorcontrib>Taigman, Yaniv</creatorcontrib><creatorcontrib>Fazel-Zarandi, Maryam</creatorcontrib><creatorcontrib>Celikyilmaz, Asli</creatorcontrib><creatorcontrib>Zettlemoyer, Luke</creatorcontrib><creatorcontrib>Aghajanyan, Armen</creatorcontrib><title>Scaling Autoregressive Multi-Modal Models: Pretraining and Instruction Tuning</title><title>arXiv.org</title><description>We present CM3Leon (pronounced "Chameleon"), a retrieval-augmented, token-based, decoder-only multi-modal language model capable of generating and infilling both text and images. CM3Leon uses the CM3 multi-modal architecture but additionally shows the extreme benefits of scaling up and tuning on more diverse instruction-style data. It is the first multi-modal model trained with a recipe adapted from text-only language models, including a large-scale retrieval-augmented pre-training stage and a second multi-task supervised fine-tuning (SFT) stage. It is also a general-purpose model that can do both text-to-image and image-to-text generation, allowing us to introduce self-contained contrastive decoding methods that produce high-quality outputs. Extensive experiments demonstrate that this recipe is highly effective for multi-modal models. CM3Leon achieves state-of-the-art performance in text-to-image generation with 5x less training compute than comparable methods (zero-shot MS-COCO FID of 4.88). After SFT, CM3Leon can also demonstrate unprecedented levels of controllability in tasks ranging from language-guided image editing to image-controlled generation and segmentation.</description><subject>Autoregressive models</subject><subject>Decoding</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Production methods</subject><subject>Retrieval</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNitEKgjAYRkcQJOU7DLoWdMu5uoso6kII8l6GLpmMrf5_6_lT6AG6OR-c7yxIwjgvMrljbEVSxDHPcyYqVpY8IfWjU9a4gR5j8KAH0Ijmo2kdbTBZ7Xtl6URt8UDvoAMo4-ZcuZ7eHAaIXTDe0SbOekOWT2VRp79dk-3l3Jyu2Qv8O2oM7egjuOlqmRTFXkpRcf5f9QW_Aj5P</recordid><startdate>20230905</startdate><enddate>20230905</enddate><creator>Yu, Lili</creator><creator>Bowen, Shi</creator><creator>Pasunuru, Ramakanth</creator><creator>Muller, Benjamin</creator><creator>Golovneva, Olga</creator><creator>Wang, Tianlu</creator><creator>Babu, Arun</creator><creator>Tang, Binh</creator><creator>Karrer, Brian</creator><creator>Sheynin, Shelly</creator><creator>Ross, Candace</creator><creator>Polyak, Adam</creator><creator>Howes, Russell</creator><creator>Sharma, Vasu</creator><creator>Xu, Puxin</creator><creator>Tamoyan, Hovhannes</creator><creator>Oron Ashual</creator><creator>Singer, Uriel</creator><creator>Shang-Wen, Li</creator><creator>Zhang, Susan</creator><creator>James, Richard</creator><creator>Ghosh, Gargi</creator><creator>Taigman, Yaniv</creator><creator>Fazel-Zarandi, Maryam</creator><creator>Celikyilmaz, Asli</creator><creator>Zettlemoyer, Luke</creator><creator>Aghajanyan, Armen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230905</creationdate><title>Scaling Autoregressive Multi-Modal Models: Pretraining and Instruction Tuning</title><author>Yu, Lili ; Bowen, Shi ; Pasunuru, Ramakanth ; Muller, Benjamin ; Golovneva, Olga ; Wang, Tianlu ; Babu, Arun ; Tang, Binh ; Karrer, Brian ; Sheynin, Shelly ; Ross, Candace ; Polyak, Adam ; Howes, Russell ; Sharma, Vasu ; Xu, Puxin ; Tamoyan, Hovhannes ; Oron Ashual ; Singer, Uriel ; Shang-Wen, Li ; Zhang, Susan ; James, Richard ; Ghosh, Gargi ; Taigman, Yaniv ; Fazel-Zarandi, Maryam ; Celikyilmaz, Asli ; Zettlemoyer, Luke ; Aghajanyan, Armen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28619886733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Autoregressive models</topic><topic>Decoding</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Production methods</topic><topic>Retrieval</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Yu, Lili</creatorcontrib><creatorcontrib>Bowen, Shi</creatorcontrib><creatorcontrib>Pasunuru, Ramakanth</creatorcontrib><creatorcontrib>Muller, Benjamin</creatorcontrib><creatorcontrib>Golovneva, Olga</creatorcontrib><creatorcontrib>Wang, Tianlu</creatorcontrib><creatorcontrib>Babu, Arun</creatorcontrib><creatorcontrib>Tang, Binh</creatorcontrib><creatorcontrib>Karrer, Brian</creatorcontrib><creatorcontrib>Sheynin, Shelly</creatorcontrib><creatorcontrib>Ross, Candace</creatorcontrib><creatorcontrib>Polyak, Adam</creatorcontrib><creatorcontrib>Howes, Russell</creatorcontrib><creatorcontrib>Sharma, Vasu</creatorcontrib><creatorcontrib>Xu, Puxin</creatorcontrib><creatorcontrib>Tamoyan, Hovhannes</creatorcontrib><creatorcontrib>Oron Ashual</creatorcontrib><creatorcontrib>Singer, Uriel</creatorcontrib><creatorcontrib>Shang-Wen, Li</creatorcontrib><creatorcontrib>Zhang, Susan</creatorcontrib><creatorcontrib>James, Richard</creatorcontrib><creatorcontrib>Ghosh, Gargi</creatorcontrib><creatorcontrib>Taigman, Yaniv</creatorcontrib><creatorcontrib>Fazel-Zarandi, Maryam</creatorcontrib><creatorcontrib>Celikyilmaz, Asli</creatorcontrib><creatorcontrib>Zettlemoyer, Luke</creatorcontrib><creatorcontrib>Aghajanyan, Armen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Lili</au><au>Bowen, Shi</au><au>Pasunuru, Ramakanth</au><au>Muller, Benjamin</au><au>Golovneva, Olga</au><au>Wang, Tianlu</au><au>Babu, Arun</au><au>Tang, Binh</au><au>Karrer, Brian</au><au>Sheynin, Shelly</au><au>Ross, Candace</au><au>Polyak, Adam</au><au>Howes, Russell</au><au>Sharma, Vasu</au><au>Xu, Puxin</au><au>Tamoyan, Hovhannes</au><au>Oron Ashual</au><au>Singer, Uriel</au><au>Shang-Wen, Li</au><au>Zhang, Susan</au><au>James, Richard</au><au>Ghosh, Gargi</au><au>Taigman, Yaniv</au><au>Fazel-Zarandi, Maryam</au><au>Celikyilmaz, Asli</au><au>Zettlemoyer, Luke</au><au>Aghajanyan, Armen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Scaling Autoregressive Multi-Modal Models: Pretraining and Instruction Tuning</atitle><jtitle>arXiv.org</jtitle><date>2023-09-05</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We present CM3Leon (pronounced "Chameleon"), a retrieval-augmented, token-based, decoder-only multi-modal language model capable of generating and infilling both text and images. CM3Leon uses the CM3 multi-modal architecture but additionally shows the extreme benefits of scaling up and tuning on more diverse instruction-style data. It is the first multi-modal model trained with a recipe adapted from text-only language models, including a large-scale retrieval-augmented pre-training stage and a second multi-task supervised fine-tuning (SFT) stage. It is also a general-purpose model that can do both text-to-image and image-to-text generation, allowing us to introduce self-contained contrastive decoding methods that produce high-quality outputs. Extensive experiments demonstrate that this recipe is highly effective for multi-modal models. CM3Leon achieves state-of-the-art performance in text-to-image generation with 5x less training compute than comparable methods (zero-shot MS-COCO FID of 4.88). After SFT, CM3Leon can also demonstrate unprecedented levels of controllability in tasks ranging from language-guided image editing to image-controlled generation and segmentation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2861988673 |
source | Free E- Journals |
subjects | Autoregressive models Decoding Image processing Image segmentation Production methods Retrieval Training |
title | Scaling Autoregressive Multi-Modal Models: Pretraining and Instruction Tuning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A06%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Scaling%20Autoregressive%20Multi-Modal%20Models:%20Pretraining%20and%20Instruction%20Tuning&rft.jtitle=arXiv.org&rft.au=Yu,%20Lili&rft.date=2023-09-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2861988673%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2861988673&rft_id=info:pmid/&rfr_iscdi=true |