Scaling Autoregressive Multi-Modal Models: Pretraining and Instruction Tuning

We present CM3Leon (pronounced "Chameleon"), a retrieval-augmented, token-based, decoder-only multi-modal language model capable of generating and infilling both text and images. CM3Leon uses the CM3 multi-modal architecture but additionally shows the extreme benefits of scaling up and tun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-09
Hauptverfasser: Yu, Lili, Bowen, Shi, Pasunuru, Ramakanth, Muller, Benjamin, Golovneva, Olga, Wang, Tianlu, Babu, Arun, Tang, Binh, Karrer, Brian, Sheynin, Shelly, Ross, Candace, Polyak, Adam, Howes, Russell, Sharma, Vasu, Xu, Puxin, Tamoyan, Hovhannes, Oron Ashual, Singer, Uriel, Shang-Wen, Li, Zhang, Susan, James, Richard, Ghosh, Gargi, Taigman, Yaniv, Fazel-Zarandi, Maryam, Celikyilmaz, Asli, Zettlemoyer, Luke, Aghajanyan, Armen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Yu, Lili
Bowen, Shi
Pasunuru, Ramakanth
Muller, Benjamin
Golovneva, Olga
Wang, Tianlu
Babu, Arun
Tang, Binh
Karrer, Brian
Sheynin, Shelly
Ross, Candace
Polyak, Adam
Howes, Russell
Sharma, Vasu
Xu, Puxin
Tamoyan, Hovhannes
Oron Ashual
Singer, Uriel
Shang-Wen, Li
Zhang, Susan
James, Richard
Ghosh, Gargi
Taigman, Yaniv
Fazel-Zarandi, Maryam
Celikyilmaz, Asli
Zettlemoyer, Luke
Aghajanyan, Armen
description We present CM3Leon (pronounced "Chameleon"), a retrieval-augmented, token-based, decoder-only multi-modal language model capable of generating and infilling both text and images. CM3Leon uses the CM3 multi-modal architecture but additionally shows the extreme benefits of scaling up and tuning on more diverse instruction-style data. It is the first multi-modal model trained with a recipe adapted from text-only language models, including a large-scale retrieval-augmented pre-training stage and a second multi-task supervised fine-tuning (SFT) stage. It is also a general-purpose model that can do both text-to-image and image-to-text generation, allowing us to introduce self-contained contrastive decoding methods that produce high-quality outputs. Extensive experiments demonstrate that this recipe is highly effective for multi-modal models. CM3Leon achieves state-of-the-art performance in text-to-image generation with 5x less training compute than comparable methods (zero-shot MS-COCO FID of 4.88). After SFT, CM3Leon can also demonstrate unprecedented levels of controllability in tasks ranging from language-guided image editing to image-controlled generation and segmentation.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2861988673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2861988673</sourcerecordid><originalsourceid>FETCH-proquest_journals_28619886733</originalsourceid><addsrcrecordid>eNqNitEKgjAYRkcQJOU7DLoWdMu5uoso6kII8l6GLpmMrf5_6_lT6AG6OR-c7yxIwjgvMrljbEVSxDHPcyYqVpY8IfWjU9a4gR5j8KAH0Ijmo2kdbTBZ7Xtl6URt8UDvoAMo4-ZcuZ7eHAaIXTDe0SbOekOWT2VRp79dk-3l3Jyu2Qv8O2oM7egjuOlqmRTFXkpRcf5f9QW_Aj5P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861988673</pqid></control><display><type>article</type><title>Scaling Autoregressive Multi-Modal Models: Pretraining and Instruction Tuning</title><source>Free E- Journals</source><creator>Yu, Lili ; Bowen, Shi ; Pasunuru, Ramakanth ; Muller, Benjamin ; Golovneva, Olga ; Wang, Tianlu ; Babu, Arun ; Tang, Binh ; Karrer, Brian ; Sheynin, Shelly ; Ross, Candace ; Polyak, Adam ; Howes, Russell ; Sharma, Vasu ; Xu, Puxin ; Tamoyan, Hovhannes ; Oron Ashual ; Singer, Uriel ; Shang-Wen, Li ; Zhang, Susan ; James, Richard ; Ghosh, Gargi ; Taigman, Yaniv ; Fazel-Zarandi, Maryam ; Celikyilmaz, Asli ; Zettlemoyer, Luke ; Aghajanyan, Armen</creator><creatorcontrib>Yu, Lili ; Bowen, Shi ; Pasunuru, Ramakanth ; Muller, Benjamin ; Golovneva, Olga ; Wang, Tianlu ; Babu, Arun ; Tang, Binh ; Karrer, Brian ; Sheynin, Shelly ; Ross, Candace ; Polyak, Adam ; Howes, Russell ; Sharma, Vasu ; Xu, Puxin ; Tamoyan, Hovhannes ; Oron Ashual ; Singer, Uriel ; Shang-Wen, Li ; Zhang, Susan ; James, Richard ; Ghosh, Gargi ; Taigman, Yaniv ; Fazel-Zarandi, Maryam ; Celikyilmaz, Asli ; Zettlemoyer, Luke ; Aghajanyan, Armen</creatorcontrib><description>We present CM3Leon (pronounced "Chameleon"), a retrieval-augmented, token-based, decoder-only multi-modal language model capable of generating and infilling both text and images. CM3Leon uses the CM3 multi-modal architecture but additionally shows the extreme benefits of scaling up and tuning on more diverse instruction-style data. It is the first multi-modal model trained with a recipe adapted from text-only language models, including a large-scale retrieval-augmented pre-training stage and a second multi-task supervised fine-tuning (SFT) stage. It is also a general-purpose model that can do both text-to-image and image-to-text generation, allowing us to introduce self-contained contrastive decoding methods that produce high-quality outputs. Extensive experiments demonstrate that this recipe is highly effective for multi-modal models. CM3Leon achieves state-of-the-art performance in text-to-image generation with 5x less training compute than comparable methods (zero-shot MS-COCO FID of 4.88). After SFT, CM3Leon can also demonstrate unprecedented levels of controllability in tasks ranging from language-guided image editing to image-controlled generation and segmentation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Autoregressive models ; Decoding ; Image processing ; Image segmentation ; Production methods ; Retrieval ; Training</subject><ispartof>arXiv.org, 2023-09</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Yu, Lili</creatorcontrib><creatorcontrib>Bowen, Shi</creatorcontrib><creatorcontrib>Pasunuru, Ramakanth</creatorcontrib><creatorcontrib>Muller, Benjamin</creatorcontrib><creatorcontrib>Golovneva, Olga</creatorcontrib><creatorcontrib>Wang, Tianlu</creatorcontrib><creatorcontrib>Babu, Arun</creatorcontrib><creatorcontrib>Tang, Binh</creatorcontrib><creatorcontrib>Karrer, Brian</creatorcontrib><creatorcontrib>Sheynin, Shelly</creatorcontrib><creatorcontrib>Ross, Candace</creatorcontrib><creatorcontrib>Polyak, Adam</creatorcontrib><creatorcontrib>Howes, Russell</creatorcontrib><creatorcontrib>Sharma, Vasu</creatorcontrib><creatorcontrib>Xu, Puxin</creatorcontrib><creatorcontrib>Tamoyan, Hovhannes</creatorcontrib><creatorcontrib>Oron Ashual</creatorcontrib><creatorcontrib>Singer, Uriel</creatorcontrib><creatorcontrib>Shang-Wen, Li</creatorcontrib><creatorcontrib>Zhang, Susan</creatorcontrib><creatorcontrib>James, Richard</creatorcontrib><creatorcontrib>Ghosh, Gargi</creatorcontrib><creatorcontrib>Taigman, Yaniv</creatorcontrib><creatorcontrib>Fazel-Zarandi, Maryam</creatorcontrib><creatorcontrib>Celikyilmaz, Asli</creatorcontrib><creatorcontrib>Zettlemoyer, Luke</creatorcontrib><creatorcontrib>Aghajanyan, Armen</creatorcontrib><title>Scaling Autoregressive Multi-Modal Models: Pretraining and Instruction Tuning</title><title>arXiv.org</title><description>We present CM3Leon (pronounced "Chameleon"), a retrieval-augmented, token-based, decoder-only multi-modal language model capable of generating and infilling both text and images. CM3Leon uses the CM3 multi-modal architecture but additionally shows the extreme benefits of scaling up and tuning on more diverse instruction-style data. It is the first multi-modal model trained with a recipe adapted from text-only language models, including a large-scale retrieval-augmented pre-training stage and a second multi-task supervised fine-tuning (SFT) stage. It is also a general-purpose model that can do both text-to-image and image-to-text generation, allowing us to introduce self-contained contrastive decoding methods that produce high-quality outputs. Extensive experiments demonstrate that this recipe is highly effective for multi-modal models. CM3Leon achieves state-of-the-art performance in text-to-image generation with 5x less training compute than comparable methods (zero-shot MS-COCO FID of 4.88). After SFT, CM3Leon can also demonstrate unprecedented levels of controllability in tasks ranging from language-guided image editing to image-controlled generation and segmentation.</description><subject>Autoregressive models</subject><subject>Decoding</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Production methods</subject><subject>Retrieval</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNitEKgjAYRkcQJOU7DLoWdMu5uoso6kII8l6GLpmMrf5_6_lT6AG6OR-c7yxIwjgvMrljbEVSxDHPcyYqVpY8IfWjU9a4gR5j8KAH0Ijmo2kdbTBZ7Xtl6URt8UDvoAMo4-ZcuZ7eHAaIXTDe0SbOekOWT2VRp79dk-3l3Jyu2Qv8O2oM7egjuOlqmRTFXkpRcf5f9QW_Aj5P</recordid><startdate>20230905</startdate><enddate>20230905</enddate><creator>Yu, Lili</creator><creator>Bowen, Shi</creator><creator>Pasunuru, Ramakanth</creator><creator>Muller, Benjamin</creator><creator>Golovneva, Olga</creator><creator>Wang, Tianlu</creator><creator>Babu, Arun</creator><creator>Tang, Binh</creator><creator>Karrer, Brian</creator><creator>Sheynin, Shelly</creator><creator>Ross, Candace</creator><creator>Polyak, Adam</creator><creator>Howes, Russell</creator><creator>Sharma, Vasu</creator><creator>Xu, Puxin</creator><creator>Tamoyan, Hovhannes</creator><creator>Oron Ashual</creator><creator>Singer, Uriel</creator><creator>Shang-Wen, Li</creator><creator>Zhang, Susan</creator><creator>James, Richard</creator><creator>Ghosh, Gargi</creator><creator>Taigman, Yaniv</creator><creator>Fazel-Zarandi, Maryam</creator><creator>Celikyilmaz, Asli</creator><creator>Zettlemoyer, Luke</creator><creator>Aghajanyan, Armen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230905</creationdate><title>Scaling Autoregressive Multi-Modal Models: Pretraining and Instruction Tuning</title><author>Yu, Lili ; Bowen, Shi ; Pasunuru, Ramakanth ; Muller, Benjamin ; Golovneva, Olga ; Wang, Tianlu ; Babu, Arun ; Tang, Binh ; Karrer, Brian ; Sheynin, Shelly ; Ross, Candace ; Polyak, Adam ; Howes, Russell ; Sharma, Vasu ; Xu, Puxin ; Tamoyan, Hovhannes ; Oron Ashual ; Singer, Uriel ; Shang-Wen, Li ; Zhang, Susan ; James, Richard ; Ghosh, Gargi ; Taigman, Yaniv ; Fazel-Zarandi, Maryam ; Celikyilmaz, Asli ; Zettlemoyer, Luke ; Aghajanyan, Armen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28619886733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Autoregressive models</topic><topic>Decoding</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Production methods</topic><topic>Retrieval</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Yu, Lili</creatorcontrib><creatorcontrib>Bowen, Shi</creatorcontrib><creatorcontrib>Pasunuru, Ramakanth</creatorcontrib><creatorcontrib>Muller, Benjamin</creatorcontrib><creatorcontrib>Golovneva, Olga</creatorcontrib><creatorcontrib>Wang, Tianlu</creatorcontrib><creatorcontrib>Babu, Arun</creatorcontrib><creatorcontrib>Tang, Binh</creatorcontrib><creatorcontrib>Karrer, Brian</creatorcontrib><creatorcontrib>Sheynin, Shelly</creatorcontrib><creatorcontrib>Ross, Candace</creatorcontrib><creatorcontrib>Polyak, Adam</creatorcontrib><creatorcontrib>Howes, Russell</creatorcontrib><creatorcontrib>Sharma, Vasu</creatorcontrib><creatorcontrib>Xu, Puxin</creatorcontrib><creatorcontrib>Tamoyan, Hovhannes</creatorcontrib><creatorcontrib>Oron Ashual</creatorcontrib><creatorcontrib>Singer, Uriel</creatorcontrib><creatorcontrib>Shang-Wen, Li</creatorcontrib><creatorcontrib>Zhang, Susan</creatorcontrib><creatorcontrib>James, Richard</creatorcontrib><creatorcontrib>Ghosh, Gargi</creatorcontrib><creatorcontrib>Taigman, Yaniv</creatorcontrib><creatorcontrib>Fazel-Zarandi, Maryam</creatorcontrib><creatorcontrib>Celikyilmaz, Asli</creatorcontrib><creatorcontrib>Zettlemoyer, Luke</creatorcontrib><creatorcontrib>Aghajanyan, Armen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Lili</au><au>Bowen, Shi</au><au>Pasunuru, Ramakanth</au><au>Muller, Benjamin</au><au>Golovneva, Olga</au><au>Wang, Tianlu</au><au>Babu, Arun</au><au>Tang, Binh</au><au>Karrer, Brian</au><au>Sheynin, Shelly</au><au>Ross, Candace</au><au>Polyak, Adam</au><au>Howes, Russell</au><au>Sharma, Vasu</au><au>Xu, Puxin</au><au>Tamoyan, Hovhannes</au><au>Oron Ashual</au><au>Singer, Uriel</au><au>Shang-Wen, Li</au><au>Zhang, Susan</au><au>James, Richard</au><au>Ghosh, Gargi</au><au>Taigman, Yaniv</au><au>Fazel-Zarandi, Maryam</au><au>Celikyilmaz, Asli</au><au>Zettlemoyer, Luke</au><au>Aghajanyan, Armen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Scaling Autoregressive Multi-Modal Models: Pretraining and Instruction Tuning</atitle><jtitle>arXiv.org</jtitle><date>2023-09-05</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We present CM3Leon (pronounced "Chameleon"), a retrieval-augmented, token-based, decoder-only multi-modal language model capable of generating and infilling both text and images. CM3Leon uses the CM3 multi-modal architecture but additionally shows the extreme benefits of scaling up and tuning on more diverse instruction-style data. It is the first multi-modal model trained with a recipe adapted from text-only language models, including a large-scale retrieval-augmented pre-training stage and a second multi-task supervised fine-tuning (SFT) stage. It is also a general-purpose model that can do both text-to-image and image-to-text generation, allowing us to introduce self-contained contrastive decoding methods that produce high-quality outputs. Extensive experiments demonstrate that this recipe is highly effective for multi-modal models. CM3Leon achieves state-of-the-art performance in text-to-image generation with 5x less training compute than comparable methods (zero-shot MS-COCO FID of 4.88). After SFT, CM3Leon can also demonstrate unprecedented levels of controllability in tasks ranging from language-guided image editing to image-controlled generation and segmentation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2861988673
source Free E- Journals
subjects Autoregressive models
Decoding
Image processing
Image segmentation
Production methods
Retrieval
Training
title Scaling Autoregressive Multi-Modal Models: Pretraining and Instruction Tuning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A06%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Scaling%20Autoregressive%20Multi-Modal%20Models:%20Pretraining%20and%20Instruction%20Tuning&rft.jtitle=arXiv.org&rft.au=Yu,%20Lili&rft.date=2023-09-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2861988673%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2861988673&rft_id=info:pmid/&rfr_iscdi=true