Completion Procedures in Measure Theory

We propose a unified treatment of extensions of group-valued contents (i.e., additive set functions defined on a ring) by means of adding new null sets. Our approach is based on the notion of a completion ring for a content μ . With every such ring N , an extension of μ is naturally associated which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis mathematica (Budapest) 2023-09, Vol.49 (3), p.855-880
Hauptverfasser: Smirnov, A. G., Smirnov, M. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 880
container_issue 3
container_start_page 855
container_title Analysis mathematica (Budapest)
container_volume 49
creator Smirnov, A. G.
Smirnov, M. S.
description We propose a unified treatment of extensions of group-valued contents (i.e., additive set functions defined on a ring) by means of adding new null sets. Our approach is based on the notion of a completion ring for a content μ . With every such ring N , an extension of μ is naturally associated which is called the N -completion of μ . The N -completion operation comprises most previously known completion-type procedures and also gives rise to some new extensions, which may be useful for constructing counterexamples in measure theory. We find a condition ensuring that σ -additivity of a content is preserved under the N -completion and establish a criterion for the N -completion of a measure to be again a measure.
doi_str_mv 10.1007/s10476-023-0233-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2861831176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2861831176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-93cfcd7a8fe7362147e72e412f7c946941340440eabbce70c809d46e2e48e81b3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMouFY_gLcFD56iM0maZI-y-A8qeqjgLWzTWW1pNzXZHvrtzbKCJw-PGYbfewOPsUuEGwQwtwlBGc1ByEGSyyNW4NRaLoz8OGYF4HC0U3HKzlJaA0ClrSzYdR22uw31q9CVbzF4Wu4jpXLVlS_UpLyX8y8K8XDOTtpmk-jid07Y-8P9vH7is9fH5_puxr3QtueV9K1fmsa2ZKQWqAwZQQpFa3yldKVQKlAKqFksPBnwFqql0pQZSxYXcsKuxtxdDN97Sr1bh33s8ksnrEYrEY3OFI6UjyGlSK3bxdW2iQeH4IY-3NiHy10Mkk5mjxg9KbPdJ8W_5P9NP68QYPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861831176</pqid></control><display><type>article</type><title>Completion Procedures in Measure Theory</title><source>SpringerLink Journals</source><creator>Smirnov, A. G. ; Smirnov, M. S.</creator><creatorcontrib>Smirnov, A. G. ; Smirnov, M. S.</creatorcontrib><description>We propose a unified treatment of extensions of group-valued contents (i.e., additive set functions defined on a ring) by means of adding new null sets. Our approach is based on the notion of a completion ring for a content μ . With every such ring N , an extension of μ is naturally associated which is called the N -completion of μ . The N -completion operation comprises most previously known completion-type procedures and also gives rise to some new extensions, which may be useful for constructing counterexamples in measure theory. We find a condition ensuring that σ -additivity of a content is preserved under the N -completion and establish a criterion for the N -completion of a measure to be again a measure.</description><identifier>ISSN: 0133-3852</identifier><identifier>EISSN: 1588-273X</identifier><identifier>DOI: 10.1007/s10476-023-0233-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Mathematics ; Mathematics and Statistics</subject><ispartof>Analysis mathematica (Budapest), 2023-09, Vol.49 (3), p.855-880</ispartof><rights>Akadémiai Kiadó 2023</rights><rights>Akadémiai Kiadó 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-93cfcd7a8fe7362147e72e412f7c946941340440eabbce70c809d46e2e48e81b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10476-023-0233-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10476-023-0233-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Smirnov, A. G.</creatorcontrib><creatorcontrib>Smirnov, M. S.</creatorcontrib><title>Completion Procedures in Measure Theory</title><title>Analysis mathematica (Budapest)</title><addtitle>Anal Math</addtitle><description>We propose a unified treatment of extensions of group-valued contents (i.e., additive set functions defined on a ring) by means of adding new null sets. Our approach is based on the notion of a completion ring for a content μ . With every such ring N , an extension of μ is naturally associated which is called the N -completion of μ . The N -completion operation comprises most previously known completion-type procedures and also gives rise to some new extensions, which may be useful for constructing counterexamples in measure theory. We find a condition ensuring that σ -additivity of a content is preserved under the N -completion and establish a criterion for the N -completion of a measure to be again a measure.</description><subject>Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0133-3852</issn><issn>1588-273X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMouFY_gLcFD56iM0maZI-y-A8qeqjgLWzTWW1pNzXZHvrtzbKCJw-PGYbfewOPsUuEGwQwtwlBGc1ByEGSyyNW4NRaLoz8OGYF4HC0U3HKzlJaA0ClrSzYdR22uw31q9CVbzF4Wu4jpXLVlS_UpLyX8y8K8XDOTtpmk-jid07Y-8P9vH7is9fH5_puxr3QtueV9K1fmsa2ZKQWqAwZQQpFa3yldKVQKlAKqFksPBnwFqql0pQZSxYXcsKuxtxdDN97Sr1bh33s8ksnrEYrEY3OFI6UjyGlSK3bxdW2iQeH4IY-3NiHy10Mkk5mjxg9KbPdJ8W_5P9NP68QYPg</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Smirnov, A. G.</creator><creator>Smirnov, M. S.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230901</creationdate><title>Completion Procedures in Measure Theory</title><author>Smirnov, A. G. ; Smirnov, M. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-93cfcd7a8fe7362147e72e412f7c946941340440eabbce70c809d46e2e48e81b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smirnov, A. G.</creatorcontrib><creatorcontrib>Smirnov, M. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Analysis mathematica (Budapest)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smirnov, A. G.</au><au>Smirnov, M. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Completion Procedures in Measure Theory</atitle><jtitle>Analysis mathematica (Budapest)</jtitle><stitle>Anal Math</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>49</volume><issue>3</issue><spage>855</spage><epage>880</epage><pages>855-880</pages><issn>0133-3852</issn><eissn>1588-273X</eissn><abstract>We propose a unified treatment of extensions of group-valued contents (i.e., additive set functions defined on a ring) by means of adding new null sets. Our approach is based on the notion of a completion ring for a content μ . With every such ring N , an extension of μ is naturally associated which is called the N -completion of μ . The N -completion operation comprises most previously known completion-type procedures and also gives rise to some new extensions, which may be useful for constructing counterexamples in measure theory. We find a condition ensuring that σ -additivity of a content is preserved under the N -completion and establish a criterion for the N -completion of a measure to be again a measure.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10476-023-0233-3</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0133-3852
ispartof Analysis mathematica (Budapest), 2023-09, Vol.49 (3), p.855-880
issn 0133-3852
1588-273X
language eng
recordid cdi_proquest_journals_2861831176
source SpringerLink Journals
subjects Analysis
Mathematics
Mathematics and Statistics
title Completion Procedures in Measure Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A41%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Completion%20Procedures%20in%20Measure%20Theory&rft.jtitle=Analysis%20mathematica%20(Budapest)&rft.au=Smirnov,%20A.%20G.&rft.date=2023-09-01&rft.volume=49&rft.issue=3&rft.spage=855&rft.epage=880&rft.pages=855-880&rft.issn=0133-3852&rft.eissn=1588-273X&rft_id=info:doi/10.1007/s10476-023-0233-3&rft_dat=%3Cproquest_cross%3E2861831176%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2861831176&rft_id=info:pmid/&rfr_iscdi=true