Malicious code detection based on many‐objective transfer model

With the rapid growth of malicious codes, personal privacy, and Internet security are seriously threatened. Existing transfer learning‐based malicious code detection improves detection accuracy by transferring pre‐trained neural networks. However, it cannot efficiently tune the structure and paramet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Concurrency and computation 2023-10, Vol.35 (22)
Hauptverfasser: Zhang, Binquan, Wu, Di, Lan, Zhuoxuan, Cui, Zhihua, Xie, Liping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page
container_title Concurrency and computation
container_volume 35
creator Zhang, Binquan
Wu, Di
Lan, Zhuoxuan
Cui, Zhihua
Xie, Liping
description With the rapid growth of malicious codes, personal privacy, and Internet security are seriously threatened. Existing transfer learning‐based malicious code detection improves detection accuracy by transferring pre‐trained neural networks. However, it cannot efficiently tune the structure and parameters of the neural networks. Here, we first propose a novel many‐objective transfer model. It mainly focuses on the detection accuracy and the total number of parameters of the neural network model. The optimal structure and parameters are captured from the pre‐trained neural network by many‐objective optimization algorithm. Second, the partitioned crossover‐mutation vector angle‐based evolutionary algorithm for unconstrained many‐objective optimization is proposed to solve the model. The algorithm performs crossover mutation operations in different ways on different regions of the candidate solution to improve population diversity. The simulation results show that the model can reduce the pre‐trained neural network structure by 49% while maintaining the accuracy in malicious code detection.
doi_str_mv 10.1002/cpe.7728
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2861559270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2861559270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-183e3237d226c0f912a14aa2b8a373f5b2fb3e161aa7c1e6fdcfcf0d6185abcb3</originalsourceid><addsrcrecordid>eNo9kM1Kw0AQxxdRsFbBRwh48ZK6M9ts0mMpfkHFi56X2c0sJKTZupsKvfkIPqNPYkrF0_xh_h_wE-Ia5AykxDu35VlZYnUiJlAozKVW89N_jfpcXKTUSgkgFUzE8oW6xjVhlzIXas5qHtgNTegzS4nrbBQb6vc_X9_BtofPJ2dDpD55jtlmTHSX4sxTl_jq707F-8P92-opX78-Pq-W69wh6CGHSrFCVdaI2km_ACSYE6GtSJXKFxa9VQwaiEoHrH3tvPOy1lAVZJ1VU3Fz7N3G8LHjNJg27GI_ThqsNBTFAks5um6PLhdDSpG92cZmQ3FvQJoDIDMCMgdA6he7V1ms</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861559270</pqid></control><display><type>article</type><title>Malicious code detection based on many‐objective transfer model</title><source>Access via Wiley Online Library</source><creator>Zhang, Binquan ; Wu, Di ; Lan, Zhuoxuan ; Cui, Zhihua ; Xie, Liping</creator><creatorcontrib>Zhang, Binquan ; Wu, Di ; Lan, Zhuoxuan ; Cui, Zhihua ; Xie, Liping</creatorcontrib><description>With the rapid growth of malicious codes, personal privacy, and Internet security are seriously threatened. Existing transfer learning‐based malicious code detection improves detection accuracy by transferring pre‐trained neural networks. However, it cannot efficiently tune the structure and parameters of the neural networks. Here, we first propose a novel many‐objective transfer model. It mainly focuses on the detection accuracy and the total number of parameters of the neural network model. The optimal structure and parameters are captured from the pre‐trained neural network by many‐objective optimization algorithm. Second, the partitioned crossover‐mutation vector angle‐based evolutionary algorithm for unconstrained many‐objective optimization is proposed to solve the model. The algorithm performs crossover mutation operations in different ways on different regions of the candidate solution to improve population diversity. The simulation results show that the model can reduce the pre‐trained neural network structure by 49% while maintaining the accuracy in malicious code detection.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.7728</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Accuracy ; Crossovers ; Evolutionary algorithms ; Malware ; Mathematical models ; Mutation ; Neural networks ; Optimization ; Parameters</subject><ispartof>Concurrency and computation, 2023-10, Vol.35 (22)</ispartof><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c216t-183e3237d226c0f912a14aa2b8a373f5b2fb3e161aa7c1e6fdcfcf0d6185abcb3</cites><orcidid>0000-0002-6468-9842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Binquan</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Lan, Zhuoxuan</creatorcontrib><creatorcontrib>Cui, Zhihua</creatorcontrib><creatorcontrib>Xie, Liping</creatorcontrib><title>Malicious code detection based on many‐objective transfer model</title><title>Concurrency and computation</title><description>With the rapid growth of malicious codes, personal privacy, and Internet security are seriously threatened. Existing transfer learning‐based malicious code detection improves detection accuracy by transferring pre‐trained neural networks. However, it cannot efficiently tune the structure and parameters of the neural networks. Here, we first propose a novel many‐objective transfer model. It mainly focuses on the detection accuracy and the total number of parameters of the neural network model. The optimal structure and parameters are captured from the pre‐trained neural network by many‐objective optimization algorithm. Second, the partitioned crossover‐mutation vector angle‐based evolutionary algorithm for unconstrained many‐objective optimization is proposed to solve the model. The algorithm performs crossover mutation operations in different ways on different regions of the candidate solution to improve population diversity. The simulation results show that the model can reduce the pre‐trained neural network structure by 49% while maintaining the accuracy in malicious code detection.</description><subject>Accuracy</subject><subject>Crossovers</subject><subject>Evolutionary algorithms</subject><subject>Malware</subject><subject>Mathematical models</subject><subject>Mutation</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Parameters</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Kw0AQxxdRsFbBRwh48ZK6M9ts0mMpfkHFi56X2c0sJKTZupsKvfkIPqNPYkrF0_xh_h_wE-Ia5AykxDu35VlZYnUiJlAozKVW89N_jfpcXKTUSgkgFUzE8oW6xjVhlzIXas5qHtgNTegzS4nrbBQb6vc_X9_BtofPJ2dDpD55jtlmTHSX4sxTl_jq707F-8P92-opX78-Pq-W69wh6CGHSrFCVdaI2km_ACSYE6GtSJXKFxa9VQwaiEoHrH3tvPOy1lAVZJ1VU3Fz7N3G8LHjNJg27GI_ThqsNBTFAks5um6PLhdDSpG92cZmQ3FvQJoDIDMCMgdA6he7V1ms</recordid><startdate>20231010</startdate><enddate>20231010</enddate><creator>Zhang, Binquan</creator><creator>Wu, Di</creator><creator>Lan, Zhuoxuan</creator><creator>Cui, Zhihua</creator><creator>Xie, Liping</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6468-9842</orcidid></search><sort><creationdate>20231010</creationdate><title>Malicious code detection based on many‐objective transfer model</title><author>Zhang, Binquan ; Wu, Di ; Lan, Zhuoxuan ; Cui, Zhihua ; Xie, Liping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-183e3237d226c0f912a14aa2b8a373f5b2fb3e161aa7c1e6fdcfcf0d6185abcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Crossovers</topic><topic>Evolutionary algorithms</topic><topic>Malware</topic><topic>Mathematical models</topic><topic>Mutation</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Binquan</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Lan, Zhuoxuan</creatorcontrib><creatorcontrib>Cui, Zhihua</creatorcontrib><creatorcontrib>Xie, Liping</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Binquan</au><au>Wu, Di</au><au>Lan, Zhuoxuan</au><au>Cui, Zhihua</au><au>Xie, Liping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Malicious code detection based on many‐objective transfer model</atitle><jtitle>Concurrency and computation</jtitle><date>2023-10-10</date><risdate>2023</risdate><volume>35</volume><issue>22</issue><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>With the rapid growth of malicious codes, personal privacy, and Internet security are seriously threatened. Existing transfer learning‐based malicious code detection improves detection accuracy by transferring pre‐trained neural networks. However, it cannot efficiently tune the structure and parameters of the neural networks. Here, we first propose a novel many‐objective transfer model. It mainly focuses on the detection accuracy and the total number of parameters of the neural network model. The optimal structure and parameters are captured from the pre‐trained neural network by many‐objective optimization algorithm. Second, the partitioned crossover‐mutation vector angle‐based evolutionary algorithm for unconstrained many‐objective optimization is proposed to solve the model. The algorithm performs crossover mutation operations in different ways on different regions of the candidate solution to improve population diversity. The simulation results show that the model can reduce the pre‐trained neural network structure by 49% while maintaining the accuracy in malicious code detection.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cpe.7728</doi><orcidid>https://orcid.org/0000-0002-6468-9842</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1532-0626
ispartof Concurrency and computation, 2023-10, Vol.35 (22)
issn 1532-0626
1532-0634
language eng
recordid cdi_proquest_journals_2861559270
source Access via Wiley Online Library
subjects Accuracy
Crossovers
Evolutionary algorithms
Malware
Mathematical models
Mutation
Neural networks
Optimization
Parameters
title Malicious code detection based on many‐objective transfer model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A33%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Malicious%20code%20detection%20based%20on%20many%E2%80%90objective%20transfer%20model&rft.jtitle=Concurrency%20and%20computation&rft.au=Zhang,%20Binquan&rft.date=2023-10-10&rft.volume=35&rft.issue=22&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.7728&rft_dat=%3Cproquest_cross%3E2861559270%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2861559270&rft_id=info:pmid/&rfr_iscdi=true