Consistency of Random Forest Type Algorithms under a Probabilistic Impurity Decrease Condition
This paper derives a unifying theorem establishing consistency results for a broad class of tree-based algorithms. It improves current results in two aspects. First of all, it can be applied to algorithms that vary from traditional Random Forests due to additional randomness for choosing splits, ext...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-02 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Blum, Ricardo Hiabu, Munir Mammen, Enno Meyer, Joseph T |
description | This paper derives a unifying theorem establishing consistency results for a broad class of tree-based algorithms. It improves current results in two aspects. First of all, it can be applied to algorithms that vary from traditional Random Forests due to additional randomness for choosing splits, extending split options, allowing partitions into more than two cells in a single iteration step, and combinations of those. In particular, we prove consistency for Extremely Randomized Trees, Interaction Forests and Oblique Regression Trees using our general theorem. Secondly, it can be used to demonstrate consistency for a larger function class compared to previous results on Random Forests if one allows for additional random splits. Our results are based on the extension of the recently introduced notion of sufficient impurity decrease to a probabilistic sufficient impurity decrease condition. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2861499342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2861499342</sourcerecordid><originalsourceid>FETCH-proquest_journals_28614993423</originalsourceid><addsrcrecordid>eNqNjbEOgjAURRsTE4nyDy9xJoEWEEaDEt2McZYUKFoCfdjSgb-3gx_gdId7zr0r4lHGoiCLKd0Q35g-DEOaHmiSMI88C1RGmlmoZgHs4M5ViyOUqIWZ4bFMAo7DC7Wc36MBq1qhgcNNY81rOThRNnAdJ-uABU6i0YIbAW60lbNEtSPrjg9G-L_ckn15fhSXYNL4se6i6tFq5aqKZmkU5zmLKfuP-gJ-hUSG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861499342</pqid></control><display><type>article</type><title>Consistency of Random Forest Type Algorithms under a Probabilistic Impurity Decrease Condition</title><source>Free E- Journals</source><creator>Blum, Ricardo ; Hiabu, Munir ; Mammen, Enno ; Meyer, Joseph T</creator><creatorcontrib>Blum, Ricardo ; Hiabu, Munir ; Mammen, Enno ; Meyer, Joseph T</creatorcontrib><description>This paper derives a unifying theorem establishing consistency results for a broad class of tree-based algorithms. It improves current results in two aspects. First of all, it can be applied to algorithms that vary from traditional Random Forests due to additional randomness for choosing splits, extending split options, allowing partitions into more than two cells in a single iteration step, and combinations of those. In particular, we prove consistency for Extremely Randomized Trees, Interaction Forests and Oblique Regression Trees using our general theorem. Secondly, it can be used to demonstrate consistency for a larger function class compared to previous results on Random Forests if one allows for additional random splits. Our results are based on the extension of the recently introduced notion of sufficient impurity decrease to a probabilistic sufficient impurity decrease condition.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Impurities ; Random variables</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Blum, Ricardo</creatorcontrib><creatorcontrib>Hiabu, Munir</creatorcontrib><creatorcontrib>Mammen, Enno</creatorcontrib><creatorcontrib>Meyer, Joseph T</creatorcontrib><title>Consistency of Random Forest Type Algorithms under a Probabilistic Impurity Decrease Condition</title><title>arXiv.org</title><description>This paper derives a unifying theorem establishing consistency results for a broad class of tree-based algorithms. It improves current results in two aspects. First of all, it can be applied to algorithms that vary from traditional Random Forests due to additional randomness for choosing splits, extending split options, allowing partitions into more than two cells in a single iteration step, and combinations of those. In particular, we prove consistency for Extremely Randomized Trees, Interaction Forests and Oblique Regression Trees using our general theorem. Secondly, it can be used to demonstrate consistency for a larger function class compared to previous results on Random Forests if one allows for additional random splits. Our results are based on the extension of the recently introduced notion of sufficient impurity decrease to a probabilistic sufficient impurity decrease condition.</description><subject>Algorithms</subject><subject>Impurities</subject><subject>Random variables</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjbEOgjAURRsTE4nyDy9xJoEWEEaDEt2McZYUKFoCfdjSgb-3gx_gdId7zr0r4lHGoiCLKd0Q35g-DEOaHmiSMI88C1RGmlmoZgHs4M5ViyOUqIWZ4bFMAo7DC7Wc36MBq1qhgcNNY81rOThRNnAdJ-uABU6i0YIbAW60lbNEtSPrjg9G-L_ckn15fhSXYNL4se6i6tFq5aqKZmkU5zmLKfuP-gJ-hUSG</recordid><startdate>20240220</startdate><enddate>20240220</enddate><creator>Blum, Ricardo</creator><creator>Hiabu, Munir</creator><creator>Mammen, Enno</creator><creator>Meyer, Joseph T</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240220</creationdate><title>Consistency of Random Forest Type Algorithms under a Probabilistic Impurity Decrease Condition</title><author>Blum, Ricardo ; Hiabu, Munir ; Mammen, Enno ; Meyer, Joseph T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28614993423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Impurities</topic><topic>Random variables</topic><toplevel>online_resources</toplevel><creatorcontrib>Blum, Ricardo</creatorcontrib><creatorcontrib>Hiabu, Munir</creatorcontrib><creatorcontrib>Mammen, Enno</creatorcontrib><creatorcontrib>Meyer, Joseph T</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blum, Ricardo</au><au>Hiabu, Munir</au><au>Mammen, Enno</au><au>Meyer, Joseph T</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Consistency of Random Forest Type Algorithms under a Probabilistic Impurity Decrease Condition</atitle><jtitle>arXiv.org</jtitle><date>2024-02-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This paper derives a unifying theorem establishing consistency results for a broad class of tree-based algorithms. It improves current results in two aspects. First of all, it can be applied to algorithms that vary from traditional Random Forests due to additional randomness for choosing splits, extending split options, allowing partitions into more than two cells in a single iteration step, and combinations of those. In particular, we prove consistency for Extremely Randomized Trees, Interaction Forests and Oblique Regression Trees using our general theorem. Secondly, it can be used to demonstrate consistency for a larger function class compared to previous results on Random Forests if one allows for additional random splits. Our results are based on the extension of the recently introduced notion of sufficient impurity decrease to a probabilistic sufficient impurity decrease condition.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2861499342 |
source | Free E- Journals |
subjects | Algorithms Impurities Random variables |
title | Consistency of Random Forest Type Algorithms under a Probabilistic Impurity Decrease Condition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A33%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Consistency%20of%20Random%20Forest%20Type%20Algorithms%20under%20a%20Probabilistic%20Impurity%20Decrease%20Condition&rft.jtitle=arXiv.org&rft.au=Blum,%20Ricardo&rft.date=2024-02-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2861499342%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2861499342&rft_id=info:pmid/&rfr_iscdi=true |