Consistency of Random Forest Type Algorithms under a Probabilistic Impurity Decrease Condition

This paper derives a unifying theorem establishing consistency results for a broad class of tree-based algorithms. It improves current results in two aspects. First of all, it can be applied to algorithms that vary from traditional Random Forests due to additional randomness for choosing splits, ext...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Blum, Ricardo, Hiabu, Munir, Mammen, Enno, Meyer, Joseph T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Blum, Ricardo
Hiabu, Munir
Mammen, Enno
Meyer, Joseph T
description This paper derives a unifying theorem establishing consistency results for a broad class of tree-based algorithms. It improves current results in two aspects. First of all, it can be applied to algorithms that vary from traditional Random Forests due to additional randomness for choosing splits, extending split options, allowing partitions into more than two cells in a single iteration step, and combinations of those. In particular, we prove consistency for Extremely Randomized Trees, Interaction Forests and Oblique Regression Trees using our general theorem. Secondly, it can be used to demonstrate consistency for a larger function class compared to previous results on Random Forests if one allows for additional random splits. Our results are based on the extension of the recently introduced notion of sufficient impurity decrease to a probabilistic sufficient impurity decrease condition.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2861499342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2861499342</sourcerecordid><originalsourceid>FETCH-proquest_journals_28614993423</originalsourceid><addsrcrecordid>eNqNjbEOgjAURRsTE4nyDy9xJoEWEEaDEt2McZYUKFoCfdjSgb-3gx_gdId7zr0r4lHGoiCLKd0Q35g-DEOaHmiSMI88C1RGmlmoZgHs4M5ViyOUqIWZ4bFMAo7DC7Wc36MBq1qhgcNNY81rOThRNnAdJ-uABU6i0YIbAW60lbNEtSPrjg9G-L_ckn15fhSXYNL4se6i6tFq5aqKZmkU5zmLKfuP-gJ-hUSG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861499342</pqid></control><display><type>article</type><title>Consistency of Random Forest Type Algorithms under a Probabilistic Impurity Decrease Condition</title><source>Free E- Journals</source><creator>Blum, Ricardo ; Hiabu, Munir ; Mammen, Enno ; Meyer, Joseph T</creator><creatorcontrib>Blum, Ricardo ; Hiabu, Munir ; Mammen, Enno ; Meyer, Joseph T</creatorcontrib><description>This paper derives a unifying theorem establishing consistency results for a broad class of tree-based algorithms. It improves current results in two aspects. First of all, it can be applied to algorithms that vary from traditional Random Forests due to additional randomness for choosing splits, extending split options, allowing partitions into more than two cells in a single iteration step, and combinations of those. In particular, we prove consistency for Extremely Randomized Trees, Interaction Forests and Oblique Regression Trees using our general theorem. Secondly, it can be used to demonstrate consistency for a larger function class compared to previous results on Random Forests if one allows for additional random splits. Our results are based on the extension of the recently introduced notion of sufficient impurity decrease to a probabilistic sufficient impurity decrease condition.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Impurities ; Random variables</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Blum, Ricardo</creatorcontrib><creatorcontrib>Hiabu, Munir</creatorcontrib><creatorcontrib>Mammen, Enno</creatorcontrib><creatorcontrib>Meyer, Joseph T</creatorcontrib><title>Consistency of Random Forest Type Algorithms under a Probabilistic Impurity Decrease Condition</title><title>arXiv.org</title><description>This paper derives a unifying theorem establishing consistency results for a broad class of tree-based algorithms. It improves current results in two aspects. First of all, it can be applied to algorithms that vary from traditional Random Forests due to additional randomness for choosing splits, extending split options, allowing partitions into more than two cells in a single iteration step, and combinations of those. In particular, we prove consistency for Extremely Randomized Trees, Interaction Forests and Oblique Regression Trees using our general theorem. Secondly, it can be used to demonstrate consistency for a larger function class compared to previous results on Random Forests if one allows for additional random splits. Our results are based on the extension of the recently introduced notion of sufficient impurity decrease to a probabilistic sufficient impurity decrease condition.</description><subject>Algorithms</subject><subject>Impurities</subject><subject>Random variables</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjbEOgjAURRsTE4nyDy9xJoEWEEaDEt2McZYUKFoCfdjSgb-3gx_gdId7zr0r4lHGoiCLKd0Q35g-DEOaHmiSMI88C1RGmlmoZgHs4M5ViyOUqIWZ4bFMAo7DC7Wc36MBq1qhgcNNY81rOThRNnAdJ-uABU6i0YIbAW60lbNEtSPrjg9G-L_ckn15fhSXYNL4se6i6tFq5aqKZmkU5zmLKfuP-gJ-hUSG</recordid><startdate>20240220</startdate><enddate>20240220</enddate><creator>Blum, Ricardo</creator><creator>Hiabu, Munir</creator><creator>Mammen, Enno</creator><creator>Meyer, Joseph T</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240220</creationdate><title>Consistency of Random Forest Type Algorithms under a Probabilistic Impurity Decrease Condition</title><author>Blum, Ricardo ; Hiabu, Munir ; Mammen, Enno ; Meyer, Joseph T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28614993423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Impurities</topic><topic>Random variables</topic><toplevel>online_resources</toplevel><creatorcontrib>Blum, Ricardo</creatorcontrib><creatorcontrib>Hiabu, Munir</creatorcontrib><creatorcontrib>Mammen, Enno</creatorcontrib><creatorcontrib>Meyer, Joseph T</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blum, Ricardo</au><au>Hiabu, Munir</au><au>Mammen, Enno</au><au>Meyer, Joseph T</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Consistency of Random Forest Type Algorithms under a Probabilistic Impurity Decrease Condition</atitle><jtitle>arXiv.org</jtitle><date>2024-02-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This paper derives a unifying theorem establishing consistency results for a broad class of tree-based algorithms. It improves current results in two aspects. First of all, it can be applied to algorithms that vary from traditional Random Forests due to additional randomness for choosing splits, extending split options, allowing partitions into more than two cells in a single iteration step, and combinations of those. In particular, we prove consistency for Extremely Randomized Trees, Interaction Forests and Oblique Regression Trees using our general theorem. Secondly, it can be used to demonstrate consistency for a larger function class compared to previous results on Random Forests if one allows for additional random splits. Our results are based on the extension of the recently introduced notion of sufficient impurity decrease to a probabilistic sufficient impurity decrease condition.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2861499342
source Free E- Journals
subjects Algorithms
Impurities
Random variables
title Consistency of Random Forest Type Algorithms under a Probabilistic Impurity Decrease Condition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A33%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Consistency%20of%20Random%20Forest%20Type%20Algorithms%20under%20a%20Probabilistic%20Impurity%20Decrease%20Condition&rft.jtitle=arXiv.org&rft.au=Blum,%20Ricardo&rft.date=2024-02-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2861499342%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2861499342&rft_id=info:pmid/&rfr_iscdi=true