DT2CAM: A D ecision T ree to C ontent A ddressable M emory Framework

Decision trees are powerful tools for data classification. Accelerating the decision tree search is crucial for on-the-edge applications with limited power and latency budget. In this article, we propose a content-addressable memory compiler for decision tree inference acceleration. We propose a nov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on emerging topics in computing 2023-07, Vol.11 (3), p.805-810
Hauptverfasser: Rakka, Mariam, Fouda, Mohammed E., Kanj, Rouwaida, Kurdahi, Fadi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 810
container_issue 3
container_start_page 805
container_title IEEE transactions on emerging topics in computing
container_volume 11
creator Rakka, Mariam
Fouda, Mohammed E.
Kanj, Rouwaida
Kurdahi, Fadi
description Decision trees are powerful tools for data classification. Accelerating the decision tree search is crucial for on-the-edge applications with limited power and latency budget. In this article, we propose a content-addressable memory compiler for decision tree inference acceleration. We propose a novel ”adaptive-precision” scheme that results in a compact implementation and enables an efficient bijective mapping to ternary content addressable memories while maintaining high inference accuracies. We also develop a resistive-based functional synthesizer to map the decision tree to resistive content addressable memory arrays and perform functional simulations for energy, latency, and accuracy evaluations. We study the decision tree accuracy under hardware non-idealities including device defects, manufacturing variability, and input encoding noise. We test our framework on various decision tree datasets including Give Me Some Credit , Titanic , and COVID-19 . Our results reveal up to 42.4% energy savings and up to [Formula Omitted] better energy-delay-area product compared to the state-of-art hardware accelerators, and up to 333 million decisions per sec for the pipelined implementation.
doi_str_mv 10.1109/TETC.2023.3261748
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2861459526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2861459526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c706-57b8803ce18723f04517a5d9f4e4e1870b115ba6ee8cb774de6967157da5514c3</originalsourceid><addsrcrecordid>eNpNkE9rwzAMxc3YYKXrB9jNsHM6y_G_7FbStRu07JK7cRIF0jVxZ6eMfvsltIfpIiE99B4_Qp6BLQFY9lq8F_mSM54uU65AC3NHZhyUSZSW7P7f_EgWMR7YWAZUpvSMrNcFz1f7N7qia4pVG1vf04IGRDp4mlPfD9gP47WuA8boyiPSPcXOhwvdBNfhrw_fT-ShcceIi1ufk2IzRvpIdl_bz3y1SyrNVCJ1aQxLKwSjedowIUE7WWeNQDHtWAkgS6cQTVVqLWqcIoLUtZMSRJXOycv17Sn4nzPGwR78OfSjo-VGgZCZ5GpUwVVVBR9jwMaeQtu5cLHA7ITLTrjshMvecKV_e3dZNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861459526</pqid></control><display><type>article</type><title>DT2CAM: A D ecision T ree to C ontent A ddressable M emory Framework</title><source>IEEE Open Access Journals</source><source>IEEE Electronic Library (IEL)</source><creator>Rakka, Mariam ; Fouda, Mohammed E. ; Kanj, Rouwaida ; Kurdahi, Fadi</creator><creatorcontrib>Rakka, Mariam ; Fouda, Mohammed E. ; Kanj, Rouwaida ; Kurdahi, Fadi</creatorcontrib><description>Decision trees are powerful tools for data classification. Accelerating the decision tree search is crucial for on-the-edge applications with limited power and latency budget. In this article, we propose a content-addressable memory compiler for decision tree inference acceleration. We propose a novel ”adaptive-precision” scheme that results in a compact implementation and enables an efficient bijective mapping to ternary content addressable memories while maintaining high inference accuracies. We also develop a resistive-based functional synthesizer to map the decision tree to resistive content addressable memory arrays and perform functional simulations for energy, latency, and accuracy evaluations. We study the decision tree accuracy under hardware non-idealities including device defects, manufacturing variability, and input encoding noise. We test our framework on various decision tree datasets including Give Me Some Credit , Titanic , and COVID-19 . Our results reveal up to 42.4% energy savings and up to [Formula Omitted] better energy-delay-area product compared to the state-of-art hardware accelerators, and up to 333 million decisions per sec for the pipelined implementation.</description><identifier>ISSN: 2168-6750</identifier><identifier>EISSN: 2168-6750</identifier><identifier>DOI: 10.1109/TETC.2023.3261748</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Accuracy ; Associative memory ; Decision trees ; Hardware ; Inference</subject><ispartof>IEEE transactions on emerging topics in computing, 2023-07, Vol.11 (3), p.805-810</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c706-57b8803ce18723f04517a5d9f4e4e1870b115ba6ee8cb774de6967157da5514c3</cites><orcidid>0000-0002-6982-365X ; 0000-0002-2514-7960 ; 0000-0001-7139-3428 ; 0000-0002-3519-2917</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Rakka, Mariam</creatorcontrib><creatorcontrib>Fouda, Mohammed E.</creatorcontrib><creatorcontrib>Kanj, Rouwaida</creatorcontrib><creatorcontrib>Kurdahi, Fadi</creatorcontrib><title>DT2CAM: A D ecision T ree to C ontent A ddressable M emory Framework</title><title>IEEE transactions on emerging topics in computing</title><description>Decision trees are powerful tools for data classification. Accelerating the decision tree search is crucial for on-the-edge applications with limited power and latency budget. In this article, we propose a content-addressable memory compiler for decision tree inference acceleration. We propose a novel ”adaptive-precision” scheme that results in a compact implementation and enables an efficient bijective mapping to ternary content addressable memories while maintaining high inference accuracies. We also develop a resistive-based functional synthesizer to map the decision tree to resistive content addressable memory arrays and perform functional simulations for energy, latency, and accuracy evaluations. We study the decision tree accuracy under hardware non-idealities including device defects, manufacturing variability, and input encoding noise. We test our framework on various decision tree datasets including Give Me Some Credit , Titanic , and COVID-19 . Our results reveal up to 42.4% energy savings and up to [Formula Omitted] better energy-delay-area product compared to the state-of-art hardware accelerators, and up to 333 million decisions per sec for the pipelined implementation.</description><subject>Accuracy</subject><subject>Associative memory</subject><subject>Decision trees</subject><subject>Hardware</subject><subject>Inference</subject><issn>2168-6750</issn><issn>2168-6750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE9rwzAMxc3YYKXrB9jNsHM6y_G_7FbStRu07JK7cRIF0jVxZ6eMfvsltIfpIiE99B4_Qp6BLQFY9lq8F_mSM54uU65AC3NHZhyUSZSW7P7f_EgWMR7YWAZUpvSMrNcFz1f7N7qia4pVG1vf04IGRDp4mlPfD9gP47WuA8boyiPSPcXOhwvdBNfhrw_fT-ShcceIi1ufk2IzRvpIdl_bz3y1SyrNVCJ1aQxLKwSjedowIUE7WWeNQDHtWAkgS6cQTVVqLWqcIoLUtZMSRJXOycv17Sn4nzPGwR78OfSjo-VGgZCZ5GpUwVVVBR9jwMaeQtu5cLHA7ITLTrjshMvecKV_e3dZNg</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Rakka, Mariam</creator><creator>Fouda, Mohammed E.</creator><creator>Kanj, Rouwaida</creator><creator>Kurdahi, Fadi</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6982-365X</orcidid><orcidid>https://orcid.org/0000-0002-2514-7960</orcidid><orcidid>https://orcid.org/0000-0001-7139-3428</orcidid><orcidid>https://orcid.org/0000-0002-3519-2917</orcidid></search><sort><creationdate>20230701</creationdate><title>DT2CAM: A D ecision T ree to C ontent A ddressable M emory Framework</title><author>Rakka, Mariam ; Fouda, Mohammed E. ; Kanj, Rouwaida ; Kurdahi, Fadi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c706-57b8803ce18723f04517a5d9f4e4e1870b115ba6ee8cb774de6967157da5514c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Associative memory</topic><topic>Decision trees</topic><topic>Hardware</topic><topic>Inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rakka, Mariam</creatorcontrib><creatorcontrib>Fouda, Mohammed E.</creatorcontrib><creatorcontrib>Kanj, Rouwaida</creatorcontrib><creatorcontrib>Kurdahi, Fadi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on emerging topics in computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rakka, Mariam</au><au>Fouda, Mohammed E.</au><au>Kanj, Rouwaida</au><au>Kurdahi, Fadi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DT2CAM: A D ecision T ree to C ontent A ddressable M emory Framework</atitle><jtitle>IEEE transactions on emerging topics in computing</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>11</volume><issue>3</issue><spage>805</spage><epage>810</epage><pages>805-810</pages><issn>2168-6750</issn><eissn>2168-6750</eissn><abstract>Decision trees are powerful tools for data classification. Accelerating the decision tree search is crucial for on-the-edge applications with limited power and latency budget. In this article, we propose a content-addressable memory compiler for decision tree inference acceleration. We propose a novel ”adaptive-precision” scheme that results in a compact implementation and enables an efficient bijective mapping to ternary content addressable memories while maintaining high inference accuracies. We also develop a resistive-based functional synthesizer to map the decision tree to resistive content addressable memory arrays and perform functional simulations for energy, latency, and accuracy evaluations. We study the decision tree accuracy under hardware non-idealities including device defects, manufacturing variability, and input encoding noise. We test our framework on various decision tree datasets including Give Me Some Credit , Titanic , and COVID-19 . Our results reveal up to 42.4% energy savings and up to [Formula Omitted] better energy-delay-area product compared to the state-of-art hardware accelerators, and up to 333 million decisions per sec for the pipelined implementation.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TETC.2023.3261748</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6982-365X</orcidid><orcidid>https://orcid.org/0000-0002-2514-7960</orcidid><orcidid>https://orcid.org/0000-0001-7139-3428</orcidid><orcidid>https://orcid.org/0000-0002-3519-2917</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-6750
ispartof IEEE transactions on emerging topics in computing, 2023-07, Vol.11 (3), p.805-810
issn 2168-6750
2168-6750
language eng
recordid cdi_proquest_journals_2861459526
source IEEE Open Access Journals; IEEE Electronic Library (IEL)
subjects Accuracy
Associative memory
Decision trees
Hardware
Inference
title DT2CAM: A D ecision T ree to C ontent A ddressable M emory Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A15%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DT2CAM:%20A%20D%20ecision%20T%20ree%20to%20C%20ontent%20A%20ddressable%20M%20emory%20Framework&rft.jtitle=IEEE%20transactions%20on%20emerging%20topics%20in%20computing&rft.au=Rakka,%20Mariam&rft.date=2023-07-01&rft.volume=11&rft.issue=3&rft.spage=805&rft.epage=810&rft.pages=805-810&rft.issn=2168-6750&rft.eissn=2168-6750&rft_id=info:doi/10.1109/TETC.2023.3261748&rft_dat=%3Cproquest_cross%3E2861459526%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2861459526&rft_id=info:pmid/&rfr_iscdi=true