Zero‐sum game optimal control for the nonlinear switched systems based on heuristic dynamic programming

In this article, the zero‐sum game problem of control and disturbance is studied for discrete affine nonlinear switched systems with unknown dynamical models. A two‐level heuristic dynamic programming iterative algorithm for solving the zero‐sum game problem is proposed, which can be used to solve t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimal control applications & methods 2023-09, Vol.44 (5), p.2821-2837
Hauptverfasser: Fu, Xingjian, Li, Zizheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2837
container_issue 5
container_start_page 2821
container_title Optimal control applications & methods
container_volume 44
creator Fu, Xingjian
Li, Zizheng
description In this article, the zero‐sum game problem of control and disturbance is studied for discrete affine nonlinear switched systems with unknown dynamical models. A two‐level heuristic dynamic programming iterative algorithm for solving the zero‐sum game problem is proposed, which can be used to solve the Hamilton‐Jacobi‐Isaacs equation associated with the optimal regulation control problem. The convergence analysis based on the value function and control strategy is given. For algorithm implementation, neural networks are used to approximate the control strategy, disturbance strategy, and value function of the game dynamic programming, respectively. A model network is used to approximate the system states with an unknown dynamical model. The iterative algorithm steps are given. Finally, the validity of the method is verified by simulation examples.
doi_str_mv 10.1002/oca.3005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2861095080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2861095080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-df8e505c4c25b2e5aa88dcf0ed9d25675dffbf67f459430f030ba40c3659d5533</originalsourceid><addsrcrecordid>eNotkM1KAzEcxIMoWKvgIwS8eNn6z2azH0cpfkHBi168hGw-2i2bpCZZpDcfwWf0SUypp2FgmGF-CF0TWBCA8s5LsaAA7ATNCHRdQRipTtEMSEWLEtrmHF3EuAWAhtByhoYPHfzv90-cLF4Lq7HfpcGKEUvvUvAjNj7gtNHYeTcOTouA49eQ5EYrHPcxaRtxL2J23uGNnsIQ0yCx2jths-6CXwdh7eDWl-jMiDHqq3-do_fHh7flc7F6fXpZ3q8KWTKWCmVazYDJKtu-1EyItlXSgFadKlndMGVMb-rGVKyrKBig0IsKJK1ZpxijdI5ujr15-3PSMfGtn4LLk7xs68yEQQs5dXtMyeBjDNrwXci_w54T4AeQPIPkB5D0DxXRaMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861095080</pqid></control><display><type>article</type><title>Zero‐sum game optimal control for the nonlinear switched systems based on heuristic dynamic programming</title><source>Access via Wiley Online Library</source><creator>Fu, Xingjian ; Li, Zizheng</creator><creatorcontrib>Fu, Xingjian ; Li, Zizheng</creatorcontrib><description>In this article, the zero‐sum game problem of control and disturbance is studied for discrete affine nonlinear switched systems with unknown dynamical models. A two‐level heuristic dynamic programming iterative algorithm for solving the zero‐sum game problem is proposed, which can be used to solve the Hamilton‐Jacobi‐Isaacs equation associated with the optimal regulation control problem. The convergence analysis based on the value function and control strategy is given. For algorithm implementation, neural networks are used to approximate the control strategy, disturbance strategy, and value function of the game dynamic programming, respectively. A model network is used to approximate the system states with an unknown dynamical model. The iterative algorithm steps are given. Finally, the validity of the method is verified by simulation examples.</description><identifier>ISSN: 0143-2087</identifier><identifier>EISSN: 1099-1514</identifier><identifier>DOI: 10.1002/oca.3005</identifier><language>eng</language><publisher>Glasgow: Wiley Subscription Services, Inc</publisher><subject>Dynamic models ; Dynamic programming ; Game theory ; Games ; Heuristic ; Iterative algorithms ; Iterative methods ; Neural networks ; Nonlinear control ; Nonlinear systems ; Optimal control ; Strategy</subject><ispartof>Optimal control applications &amp; methods, 2023-09, Vol.44 (5), p.2821-2837</ispartof><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c255t-df8e505c4c25b2e5aa88dcf0ed9d25675dffbf67f459430f030ba40c3659d5533</citedby><cites>FETCH-LOGICAL-c255t-df8e505c4c25b2e5aa88dcf0ed9d25675dffbf67f459430f030ba40c3659d5533</cites><orcidid>0000-0002-0544-0289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fu, Xingjian</creatorcontrib><creatorcontrib>Li, Zizheng</creatorcontrib><title>Zero‐sum game optimal control for the nonlinear switched systems based on heuristic dynamic programming</title><title>Optimal control applications &amp; methods</title><description>In this article, the zero‐sum game problem of control and disturbance is studied for discrete affine nonlinear switched systems with unknown dynamical models. A two‐level heuristic dynamic programming iterative algorithm for solving the zero‐sum game problem is proposed, which can be used to solve the Hamilton‐Jacobi‐Isaacs equation associated with the optimal regulation control problem. The convergence analysis based on the value function and control strategy is given. For algorithm implementation, neural networks are used to approximate the control strategy, disturbance strategy, and value function of the game dynamic programming, respectively. A model network is used to approximate the system states with an unknown dynamical model. The iterative algorithm steps are given. Finally, the validity of the method is verified by simulation examples.</description><subject>Dynamic models</subject><subject>Dynamic programming</subject><subject>Game theory</subject><subject>Games</subject><subject>Heuristic</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Neural networks</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Optimal control</subject><subject>Strategy</subject><issn>0143-2087</issn><issn>1099-1514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkM1KAzEcxIMoWKvgIwS8eNn6z2azH0cpfkHBi168hGw-2i2bpCZZpDcfwWf0SUypp2FgmGF-CF0TWBCA8s5LsaAA7ATNCHRdQRipTtEMSEWLEtrmHF3EuAWAhtByhoYPHfzv90-cLF4Lq7HfpcGKEUvvUvAjNj7gtNHYeTcOTouA49eQ5EYrHPcxaRtxL2J23uGNnsIQ0yCx2jths-6CXwdh7eDWl-jMiDHqq3-do_fHh7flc7F6fXpZ3q8KWTKWCmVazYDJKtu-1EyItlXSgFadKlndMGVMb-rGVKyrKBig0IsKJK1ZpxijdI5ujr15-3PSMfGtn4LLk7xs68yEQQs5dXtMyeBjDNrwXci_w54T4AeQPIPkB5D0DxXRaMo</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Fu, Xingjian</creator><creator>Li, Zizheng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0544-0289</orcidid></search><sort><creationdate>202309</creationdate><title>Zero‐sum game optimal control for the nonlinear switched systems based on heuristic dynamic programming</title><author>Fu, Xingjian ; Li, Zizheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-df8e505c4c25b2e5aa88dcf0ed9d25675dffbf67f459430f030ba40c3659d5533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Dynamic models</topic><topic>Dynamic programming</topic><topic>Game theory</topic><topic>Games</topic><topic>Heuristic</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Neural networks</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Optimal control</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Xingjian</creatorcontrib><creatorcontrib>Li, Zizheng</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optimal control applications &amp; methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Xingjian</au><au>Li, Zizheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zero‐sum game optimal control for the nonlinear switched systems based on heuristic dynamic programming</atitle><jtitle>Optimal control applications &amp; methods</jtitle><date>2023-09</date><risdate>2023</risdate><volume>44</volume><issue>5</issue><spage>2821</spage><epage>2837</epage><pages>2821-2837</pages><issn>0143-2087</issn><eissn>1099-1514</eissn><abstract>In this article, the zero‐sum game problem of control and disturbance is studied for discrete affine nonlinear switched systems with unknown dynamical models. A two‐level heuristic dynamic programming iterative algorithm for solving the zero‐sum game problem is proposed, which can be used to solve the Hamilton‐Jacobi‐Isaacs equation associated with the optimal regulation control problem. The convergence analysis based on the value function and control strategy is given. For algorithm implementation, neural networks are used to approximate the control strategy, disturbance strategy, and value function of the game dynamic programming, respectively. A model network is used to approximate the system states with an unknown dynamical model. The iterative algorithm steps are given. Finally, the validity of the method is verified by simulation examples.</abstract><cop>Glasgow</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/oca.3005</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0544-0289</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0143-2087
ispartof Optimal control applications & methods, 2023-09, Vol.44 (5), p.2821-2837
issn 0143-2087
1099-1514
language eng
recordid cdi_proquest_journals_2861095080
source Access via Wiley Online Library
subjects Dynamic models
Dynamic programming
Game theory
Games
Heuristic
Iterative algorithms
Iterative methods
Neural networks
Nonlinear control
Nonlinear systems
Optimal control
Strategy
title Zero‐sum game optimal control for the nonlinear switched systems based on heuristic dynamic programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A41%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zero%E2%80%90sum%20game%20optimal%20control%20for%20the%20nonlinear%20switched%20systems%20based%20on%20heuristic%20dynamic%20programming&rft.jtitle=Optimal%20control%20applications%20&%20methods&rft.au=Fu,%20Xingjian&rft.date=2023-09&rft.volume=44&rft.issue=5&rft.spage=2821&rft.epage=2837&rft.pages=2821-2837&rft.issn=0143-2087&rft.eissn=1099-1514&rft_id=info:doi/10.1002/oca.3005&rft_dat=%3Cproquest_cross%3E2861095080%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2861095080&rft_id=info:pmid/&rfr_iscdi=true