Numerical Computation of Temperature Rise of Gas‐Insulated Transmission Lines Considering Thermal Properties of Insulating Gas

Accurate temperature rise prediction of the gas‐insulated transmission lines (GIL) can help to lower the cost of equipment through optimization design. To investigate the temperature rise of GIL and the heat transfer efficiency of new eco‐friendly insulating gas, the electromagnetic‐thermal‐fluid fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEJ transactions on electrical and electronic engineering 2023-10, Vol.18 (10), p.1589-1597
Hauptverfasser: Cheng, Shucan, Zhao, Yanpu, Hu, Bin, Xie, Kejia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1597
container_issue 10
container_start_page 1589
container_title IEEJ transactions on electrical and electronic engineering
container_volume 18
creator Cheng, Shucan
Zhao, Yanpu
Hu, Bin
Xie, Kejia
description Accurate temperature rise prediction of the gas‐insulated transmission lines (GIL) can help to lower the cost of equipment through optimization design. To investigate the temperature rise of GIL and the heat transfer efficiency of new eco‐friendly insulating gas, the electromagnetic‐thermal‐fluid field coupling method that considers the thermal properties of solid and gaseous media is proposed. The finite element method is applied to solve the eddy‐current field and obtain the Joule loss of the conductive rod and the enclosure accurately. The GIL temperature distribution of different insulating gases is computed based on their thermophysical parameters. The heat transfer efficiency is found to be positively correlated with gas density, constant pressure heat capacity and thermal conductivity. A parameter that characterizes the heat transfer efficiency of the insulating gas is defined, such that a larger value indicates a higher heat transfer efficiency. This parameter helps to quickly determine the heat transfer capacity of new eco‐friendly insulating gas, and facilitate the optimal design of GIL equipment. © 2023 Institute of Electrical Engineer of Japan and Wiley Periodicals LLC.
doi_str_mv 10.1002/tee.23886
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2861003623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2861003623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-9fc6ac2c7d63cc14d6f591ea75bfee2d2e518bcc0de3c0ca0b912df9b44054293</originalsourceid><addsrcrecordid>eNo9kM9Kw0AQhxdRsFYPvkHAk4fU_ZNskqMUrYWiIvEcNpuJbmmycWdz8NZH8Bl9EjdWPM0w88038CPkktEFo5TfeIAFF3kuj8iMFYLFSZGz4_8-E6fkDHFLaSIDNSP7x7EDZ7TaRUvbDaNX3tg-sm1UQjeAU350EL0YhGm2Uvi9_1r3OO6UhyYqneqxM4jTzcb0gMHSo2mCsn-LyndwXTA_OxtU3oR1kPydT0DwnZOTVu0QLv7qnLze35XLh3jztFovbzex5izzcdFqqTTXWSOF1ixpZJsWDFSW1i0AbzikLK-1pg0ITbWidcF40xZ1ktA04YWYk6uDd3D2YwT01daOrg8vK57LkJ2QXATq-kBpZxEdtNXgTKfcZ8VoNQVchYCr34DFDwOFcis</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861003623</pqid></control><display><type>article</type><title>Numerical Computation of Temperature Rise of Gas‐Insulated Transmission Lines Considering Thermal Properties of Insulating Gas</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cheng, Shucan ; Zhao, Yanpu ; Hu, Bin ; Xie, Kejia</creator><creatorcontrib>Cheng, Shucan ; Zhao, Yanpu ; Hu, Bin ; Xie, Kejia</creatorcontrib><description>Accurate temperature rise prediction of the gas‐insulated transmission lines (GIL) can help to lower the cost of equipment through optimization design. To investigate the temperature rise of GIL and the heat transfer efficiency of new eco‐friendly insulating gas, the electromagnetic‐thermal‐fluid field coupling method that considers the thermal properties of solid and gaseous media is proposed. The finite element method is applied to solve the eddy‐current field and obtain the Joule loss of the conductive rod and the enclosure accurately. The GIL temperature distribution of different insulating gases is computed based on their thermophysical parameters. The heat transfer efficiency is found to be positively correlated with gas density, constant pressure heat capacity and thermal conductivity. A parameter that characterizes the heat transfer efficiency of the insulating gas is defined, such that a larger value indicates a higher heat transfer efficiency. This parameter helps to quickly determine the heat transfer capacity of new eco‐friendly insulating gas, and facilitate the optimal design of GIL equipment. © 2023 Institute of Electrical Engineer of Japan and Wiley Periodicals LLC.</description><identifier>ISSN: 1931-4973</identifier><identifier>EISSN: 1931-4981</identifier><identifier>DOI: 10.1002/tee.23886</identifier><language>eng</language><publisher>Tokyo: Wiley Subscription Services, Inc</publisher><subject>Design optimization ; Eddy currents ; Efficiency ; Equipment costs ; Finite element method ; Gas density ; Gases ; Heat transfer ; Insulation ; Numerical analysis ; Parameters ; Temperature distribution ; Thermal conductivity ; Thermodynamic properties ; Transmission lines</subject><ispartof>IEEJ transactions on electrical and electronic engineering, 2023-10, Vol.18 (10), p.1589-1597</ispartof><rights>2023 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-9fc6ac2c7d63cc14d6f591ea75bfee2d2e518bcc0de3c0ca0b912df9b44054293</cites><orcidid>0000-0003-3075-3655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Cheng, Shucan</creatorcontrib><creatorcontrib>Zhao, Yanpu</creatorcontrib><creatorcontrib>Hu, Bin</creatorcontrib><creatorcontrib>Xie, Kejia</creatorcontrib><title>Numerical Computation of Temperature Rise of Gas‐Insulated Transmission Lines Considering Thermal Properties of Insulating Gas</title><title>IEEJ transactions on electrical and electronic engineering</title><description>Accurate temperature rise prediction of the gas‐insulated transmission lines (GIL) can help to lower the cost of equipment through optimization design. To investigate the temperature rise of GIL and the heat transfer efficiency of new eco‐friendly insulating gas, the electromagnetic‐thermal‐fluid field coupling method that considers the thermal properties of solid and gaseous media is proposed. The finite element method is applied to solve the eddy‐current field and obtain the Joule loss of the conductive rod and the enclosure accurately. The GIL temperature distribution of different insulating gases is computed based on their thermophysical parameters. The heat transfer efficiency is found to be positively correlated with gas density, constant pressure heat capacity and thermal conductivity. A parameter that characterizes the heat transfer efficiency of the insulating gas is defined, such that a larger value indicates a higher heat transfer efficiency. This parameter helps to quickly determine the heat transfer capacity of new eco‐friendly insulating gas, and facilitate the optimal design of GIL equipment. © 2023 Institute of Electrical Engineer of Japan and Wiley Periodicals LLC.</description><subject>Design optimization</subject><subject>Eddy currents</subject><subject>Efficiency</subject><subject>Equipment costs</subject><subject>Finite element method</subject><subject>Gas density</subject><subject>Gases</subject><subject>Heat transfer</subject><subject>Insulation</subject><subject>Numerical analysis</subject><subject>Parameters</subject><subject>Temperature distribution</subject><subject>Thermal conductivity</subject><subject>Thermodynamic properties</subject><subject>Transmission lines</subject><issn>1931-4973</issn><issn>1931-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM9Kw0AQhxdRsFYPvkHAk4fU_ZNskqMUrYWiIvEcNpuJbmmycWdz8NZH8Bl9EjdWPM0w88038CPkktEFo5TfeIAFF3kuj8iMFYLFSZGz4_8-E6fkDHFLaSIDNSP7x7EDZ7TaRUvbDaNX3tg-sm1UQjeAU350EL0YhGm2Uvi9_1r3OO6UhyYqneqxM4jTzcb0gMHSo2mCsn-LyndwXTA_OxtU3oR1kPydT0DwnZOTVu0QLv7qnLze35XLh3jztFovbzex5izzcdFqqTTXWSOF1ixpZJsWDFSW1i0AbzikLK-1pg0ITbWidcF40xZ1ktA04YWYk6uDd3D2YwT01daOrg8vK57LkJ2QXATq-kBpZxEdtNXgTKfcZ8VoNQVchYCr34DFDwOFcis</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Cheng, Shucan</creator><creator>Zhao, Yanpu</creator><creator>Hu, Bin</creator><creator>Xie, Kejia</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3075-3655</orcidid></search><sort><creationdate>202310</creationdate><title>Numerical Computation of Temperature Rise of Gas‐Insulated Transmission Lines Considering Thermal Properties of Insulating Gas</title><author>Cheng, Shucan ; Zhao, Yanpu ; Hu, Bin ; Xie, Kejia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-9fc6ac2c7d63cc14d6f591ea75bfee2d2e518bcc0de3c0ca0b912df9b44054293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Design optimization</topic><topic>Eddy currents</topic><topic>Efficiency</topic><topic>Equipment costs</topic><topic>Finite element method</topic><topic>Gas density</topic><topic>Gases</topic><topic>Heat transfer</topic><topic>Insulation</topic><topic>Numerical analysis</topic><topic>Parameters</topic><topic>Temperature distribution</topic><topic>Thermal conductivity</topic><topic>Thermodynamic properties</topic><topic>Transmission lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Shucan</creatorcontrib><creatorcontrib>Zhao, Yanpu</creatorcontrib><creatorcontrib>Hu, Bin</creatorcontrib><creatorcontrib>Xie, Kejia</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEJ transactions on electrical and electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Shucan</au><au>Zhao, Yanpu</au><au>Hu, Bin</au><au>Xie, Kejia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Computation of Temperature Rise of Gas‐Insulated Transmission Lines Considering Thermal Properties of Insulating Gas</atitle><jtitle>IEEJ transactions on electrical and electronic engineering</jtitle><date>2023-10</date><risdate>2023</risdate><volume>18</volume><issue>10</issue><spage>1589</spage><epage>1597</epage><pages>1589-1597</pages><issn>1931-4973</issn><eissn>1931-4981</eissn><abstract>Accurate temperature rise prediction of the gas‐insulated transmission lines (GIL) can help to lower the cost of equipment through optimization design. To investigate the temperature rise of GIL and the heat transfer efficiency of new eco‐friendly insulating gas, the electromagnetic‐thermal‐fluid field coupling method that considers the thermal properties of solid and gaseous media is proposed. The finite element method is applied to solve the eddy‐current field and obtain the Joule loss of the conductive rod and the enclosure accurately. The GIL temperature distribution of different insulating gases is computed based on their thermophysical parameters. The heat transfer efficiency is found to be positively correlated with gas density, constant pressure heat capacity and thermal conductivity. A parameter that characterizes the heat transfer efficiency of the insulating gas is defined, such that a larger value indicates a higher heat transfer efficiency. This parameter helps to quickly determine the heat transfer capacity of new eco‐friendly insulating gas, and facilitate the optimal design of GIL equipment. © 2023 Institute of Electrical Engineer of Japan and Wiley Periodicals LLC.</abstract><cop>Tokyo</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/tee.23886</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3075-3655</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1931-4973
ispartof IEEJ transactions on electrical and electronic engineering, 2023-10, Vol.18 (10), p.1589-1597
issn 1931-4973
1931-4981
language eng
recordid cdi_proquest_journals_2861003623
source Wiley Online Library Journals Frontfile Complete
subjects Design optimization
Eddy currents
Efficiency
Equipment costs
Finite element method
Gas density
Gases
Heat transfer
Insulation
Numerical analysis
Parameters
Temperature distribution
Thermal conductivity
Thermodynamic properties
Transmission lines
title Numerical Computation of Temperature Rise of Gas‐Insulated Transmission Lines Considering Thermal Properties of Insulating Gas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T05%3A21%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Computation%20of%20Temperature%20Rise%20of%20Gas%E2%80%90Insulated%20Transmission%20Lines%20Considering%20Thermal%20Properties%20of%20Insulating%20Gas&rft.jtitle=IEEJ%20transactions%20on%20electrical%20and%20electronic%20engineering&rft.au=Cheng,%20Shucan&rft.date=2023-10&rft.volume=18&rft.issue=10&rft.spage=1589&rft.epage=1597&rft.pages=1589-1597&rft.issn=1931-4973&rft.eissn=1931-4981&rft_id=info:doi/10.1002/tee.23886&rft_dat=%3Cproquest_cross%3E2861003623%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2861003623&rft_id=info:pmid/&rfr_iscdi=true