Numerical Computation of Temperature Rise of Gas‐Insulated Transmission Lines Considering Thermal Properties of Insulating Gas
Accurate temperature rise prediction of the gas‐insulated transmission lines (GIL) can help to lower the cost of equipment through optimization design. To investigate the temperature rise of GIL and the heat transfer efficiency of new eco‐friendly insulating gas, the electromagnetic‐thermal‐fluid fi...
Gespeichert in:
Veröffentlicht in: | IEEJ transactions on electrical and electronic engineering 2023-10, Vol.18 (10), p.1589-1597 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1597 |
---|---|
container_issue | 10 |
container_start_page | 1589 |
container_title | IEEJ transactions on electrical and electronic engineering |
container_volume | 18 |
creator | Cheng, Shucan Zhao, Yanpu Hu, Bin Xie, Kejia |
description | Accurate temperature rise prediction of the gas‐insulated transmission lines (GIL) can help to lower the cost of equipment through optimization design. To investigate the temperature rise of GIL and the heat transfer efficiency of new eco‐friendly insulating gas, the electromagnetic‐thermal‐fluid field coupling method that considers the thermal properties of solid and gaseous media is proposed. The finite element method is applied to solve the eddy‐current field and obtain the Joule loss of the conductive rod and the enclosure accurately. The GIL temperature distribution of different insulating gases is computed based on their thermophysical parameters. The heat transfer efficiency is found to be positively correlated with gas density, constant pressure heat capacity and thermal conductivity. A parameter that characterizes the heat transfer efficiency of the insulating gas is defined, such that a larger value indicates a higher heat transfer efficiency. This parameter helps to quickly determine the heat transfer capacity of new eco‐friendly insulating gas, and facilitate the optimal design of GIL equipment. © 2023 Institute of Electrical Engineer of Japan and Wiley Periodicals LLC. |
doi_str_mv | 10.1002/tee.23886 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2861003623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2861003623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-9fc6ac2c7d63cc14d6f591ea75bfee2d2e518bcc0de3c0ca0b912df9b44054293</originalsourceid><addsrcrecordid>eNo9kM9Kw0AQhxdRsFYPvkHAk4fU_ZNskqMUrYWiIvEcNpuJbmmycWdz8NZH8Bl9EjdWPM0w88038CPkktEFo5TfeIAFF3kuj8iMFYLFSZGz4_8-E6fkDHFLaSIDNSP7x7EDZ7TaRUvbDaNX3tg-sm1UQjeAU350EL0YhGm2Uvi9_1r3OO6UhyYqneqxM4jTzcb0gMHSo2mCsn-LyndwXTA_OxtU3oR1kPydT0DwnZOTVu0QLv7qnLze35XLh3jztFovbzex5izzcdFqqTTXWSOF1ixpZJsWDFSW1i0AbzikLK-1pg0ITbWidcF40xZ1ktA04YWYk6uDd3D2YwT01daOrg8vK57LkJ2QXATq-kBpZxEdtNXgTKfcZ8VoNQVchYCr34DFDwOFcis</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861003623</pqid></control><display><type>article</type><title>Numerical Computation of Temperature Rise of Gas‐Insulated Transmission Lines Considering Thermal Properties of Insulating Gas</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cheng, Shucan ; Zhao, Yanpu ; Hu, Bin ; Xie, Kejia</creator><creatorcontrib>Cheng, Shucan ; Zhao, Yanpu ; Hu, Bin ; Xie, Kejia</creatorcontrib><description>Accurate temperature rise prediction of the gas‐insulated transmission lines (GIL) can help to lower the cost of equipment through optimization design. To investigate the temperature rise of GIL and the heat transfer efficiency of new eco‐friendly insulating gas, the electromagnetic‐thermal‐fluid field coupling method that considers the thermal properties of solid and gaseous media is proposed. The finite element method is applied to solve the eddy‐current field and obtain the Joule loss of the conductive rod and the enclosure accurately. The GIL temperature distribution of different insulating gases is computed based on their thermophysical parameters. The heat transfer efficiency is found to be positively correlated with gas density, constant pressure heat capacity and thermal conductivity. A parameter that characterizes the heat transfer efficiency of the insulating gas is defined, such that a larger value indicates a higher heat transfer efficiency. This parameter helps to quickly determine the heat transfer capacity of new eco‐friendly insulating gas, and facilitate the optimal design of GIL equipment. © 2023 Institute of Electrical Engineer of Japan and Wiley Periodicals LLC.</description><identifier>ISSN: 1931-4973</identifier><identifier>EISSN: 1931-4981</identifier><identifier>DOI: 10.1002/tee.23886</identifier><language>eng</language><publisher>Tokyo: Wiley Subscription Services, Inc</publisher><subject>Design optimization ; Eddy currents ; Efficiency ; Equipment costs ; Finite element method ; Gas density ; Gases ; Heat transfer ; Insulation ; Numerical analysis ; Parameters ; Temperature distribution ; Thermal conductivity ; Thermodynamic properties ; Transmission lines</subject><ispartof>IEEJ transactions on electrical and electronic engineering, 2023-10, Vol.18 (10), p.1589-1597</ispartof><rights>2023 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-9fc6ac2c7d63cc14d6f591ea75bfee2d2e518bcc0de3c0ca0b912df9b44054293</cites><orcidid>0000-0003-3075-3655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Cheng, Shucan</creatorcontrib><creatorcontrib>Zhao, Yanpu</creatorcontrib><creatorcontrib>Hu, Bin</creatorcontrib><creatorcontrib>Xie, Kejia</creatorcontrib><title>Numerical Computation of Temperature Rise of Gas‐Insulated Transmission Lines Considering Thermal Properties of Insulating Gas</title><title>IEEJ transactions on electrical and electronic engineering</title><description>Accurate temperature rise prediction of the gas‐insulated transmission lines (GIL) can help to lower the cost of equipment through optimization design. To investigate the temperature rise of GIL and the heat transfer efficiency of new eco‐friendly insulating gas, the electromagnetic‐thermal‐fluid field coupling method that considers the thermal properties of solid and gaseous media is proposed. The finite element method is applied to solve the eddy‐current field and obtain the Joule loss of the conductive rod and the enclosure accurately. The GIL temperature distribution of different insulating gases is computed based on their thermophysical parameters. The heat transfer efficiency is found to be positively correlated with gas density, constant pressure heat capacity and thermal conductivity. A parameter that characterizes the heat transfer efficiency of the insulating gas is defined, such that a larger value indicates a higher heat transfer efficiency. This parameter helps to quickly determine the heat transfer capacity of new eco‐friendly insulating gas, and facilitate the optimal design of GIL equipment. © 2023 Institute of Electrical Engineer of Japan and Wiley Periodicals LLC.</description><subject>Design optimization</subject><subject>Eddy currents</subject><subject>Efficiency</subject><subject>Equipment costs</subject><subject>Finite element method</subject><subject>Gas density</subject><subject>Gases</subject><subject>Heat transfer</subject><subject>Insulation</subject><subject>Numerical analysis</subject><subject>Parameters</subject><subject>Temperature distribution</subject><subject>Thermal conductivity</subject><subject>Thermodynamic properties</subject><subject>Transmission lines</subject><issn>1931-4973</issn><issn>1931-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM9Kw0AQhxdRsFYPvkHAk4fU_ZNskqMUrYWiIvEcNpuJbmmycWdz8NZH8Bl9EjdWPM0w88038CPkktEFo5TfeIAFF3kuj8iMFYLFSZGz4_8-E6fkDHFLaSIDNSP7x7EDZ7TaRUvbDaNX3tg-sm1UQjeAU350EL0YhGm2Uvi9_1r3OO6UhyYqneqxM4jTzcb0gMHSo2mCsn-LyndwXTA_OxtU3oR1kPydT0DwnZOTVu0QLv7qnLze35XLh3jztFovbzex5izzcdFqqTTXWSOF1ixpZJsWDFSW1i0AbzikLK-1pg0ITbWidcF40xZ1ktA04YWYk6uDd3D2YwT01daOrg8vK57LkJ2QXATq-kBpZxEdtNXgTKfcZ8VoNQVchYCr34DFDwOFcis</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Cheng, Shucan</creator><creator>Zhao, Yanpu</creator><creator>Hu, Bin</creator><creator>Xie, Kejia</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3075-3655</orcidid></search><sort><creationdate>202310</creationdate><title>Numerical Computation of Temperature Rise of Gas‐Insulated Transmission Lines Considering Thermal Properties of Insulating Gas</title><author>Cheng, Shucan ; Zhao, Yanpu ; Hu, Bin ; Xie, Kejia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-9fc6ac2c7d63cc14d6f591ea75bfee2d2e518bcc0de3c0ca0b912df9b44054293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Design optimization</topic><topic>Eddy currents</topic><topic>Efficiency</topic><topic>Equipment costs</topic><topic>Finite element method</topic><topic>Gas density</topic><topic>Gases</topic><topic>Heat transfer</topic><topic>Insulation</topic><topic>Numerical analysis</topic><topic>Parameters</topic><topic>Temperature distribution</topic><topic>Thermal conductivity</topic><topic>Thermodynamic properties</topic><topic>Transmission lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Shucan</creatorcontrib><creatorcontrib>Zhao, Yanpu</creatorcontrib><creatorcontrib>Hu, Bin</creatorcontrib><creatorcontrib>Xie, Kejia</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEJ transactions on electrical and electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Shucan</au><au>Zhao, Yanpu</au><au>Hu, Bin</au><au>Xie, Kejia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Computation of Temperature Rise of Gas‐Insulated Transmission Lines Considering Thermal Properties of Insulating Gas</atitle><jtitle>IEEJ transactions on electrical and electronic engineering</jtitle><date>2023-10</date><risdate>2023</risdate><volume>18</volume><issue>10</issue><spage>1589</spage><epage>1597</epage><pages>1589-1597</pages><issn>1931-4973</issn><eissn>1931-4981</eissn><abstract>Accurate temperature rise prediction of the gas‐insulated transmission lines (GIL) can help to lower the cost of equipment through optimization design. To investigate the temperature rise of GIL and the heat transfer efficiency of new eco‐friendly insulating gas, the electromagnetic‐thermal‐fluid field coupling method that considers the thermal properties of solid and gaseous media is proposed. The finite element method is applied to solve the eddy‐current field and obtain the Joule loss of the conductive rod and the enclosure accurately. The GIL temperature distribution of different insulating gases is computed based on their thermophysical parameters. The heat transfer efficiency is found to be positively correlated with gas density, constant pressure heat capacity and thermal conductivity. A parameter that characterizes the heat transfer efficiency of the insulating gas is defined, such that a larger value indicates a higher heat transfer efficiency. This parameter helps to quickly determine the heat transfer capacity of new eco‐friendly insulating gas, and facilitate the optimal design of GIL equipment. © 2023 Institute of Electrical Engineer of Japan and Wiley Periodicals LLC.</abstract><cop>Tokyo</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/tee.23886</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3075-3655</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1931-4973 |
ispartof | IEEJ transactions on electrical and electronic engineering, 2023-10, Vol.18 (10), p.1589-1597 |
issn | 1931-4973 1931-4981 |
language | eng |
recordid | cdi_proquest_journals_2861003623 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Design optimization Eddy currents Efficiency Equipment costs Finite element method Gas density Gases Heat transfer Insulation Numerical analysis Parameters Temperature distribution Thermal conductivity Thermodynamic properties Transmission lines |
title | Numerical Computation of Temperature Rise of Gas‐Insulated Transmission Lines Considering Thermal Properties of Insulating Gas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T05%3A21%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Computation%20of%20Temperature%20Rise%20of%20Gas%E2%80%90Insulated%20Transmission%20Lines%20Considering%20Thermal%20Properties%20of%20Insulating%20Gas&rft.jtitle=IEEJ%20transactions%20on%20electrical%20and%20electronic%20engineering&rft.au=Cheng,%20Shucan&rft.date=2023-10&rft.volume=18&rft.issue=10&rft.spage=1589&rft.epage=1597&rft.pages=1589-1597&rft.issn=1931-4973&rft.eissn=1931-4981&rft_id=info:doi/10.1002/tee.23886&rft_dat=%3Cproquest_cross%3E2861003623%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2861003623&rft_id=info:pmid/&rfr_iscdi=true |