Sign Language Animation Splicing Model Based on LpTransformer Network
Sign language animation splicing is a hot topic.With the continuous development of machine learning technology, especially the gradual maturity of deep learning related technologies, the speed and quality of sign language animation splicing are constantly improving.When splicing sign language words...
Gespeichert in:
Veröffentlicht in: | Ji suan ji ke xue 2023-01, Vol.50 (9), p.184 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 184 |
container_title | Ji suan ji ke xue |
container_volume | 50 |
creator | Huang, Hanqiang Xing, Yunbing Shen, Jianfei Fan, Feiyi |
description | Sign language animation splicing is a hot topic.With the continuous development of machine learning technology, especially the gradual maturity of deep learning related technologies, the speed and quality of sign language animation splicing are constantly improving.When splicing sign language words into sentences, the corresponding animation also needs to be spliced.Traditional algorithms use distance loss to find the best splicing position when splicing animation, and use linear or spherical interpolation to generate transition frames.This splicing algorithm not only has obvious defects in efficiency and flexibility, but also gene-rates unnatural sign language animation.In order to solve the above problems, LpTransformer model is proposed to predict the splicing position and generate transition frames.Experiment results show that the prediction accuracy of LpTransformer's transition frames reaches 99%,which is superior to ConvS2S,LSTM and Transformer, and its splicing speed is five times faster than Transfor |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2860845754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2860845754</sourcerecordid><originalsourceid>FETCH-proquest_journals_28608457543</originalsourceid><addsrcrecordid>eNqNir0OgjAURjtoIlHe4SbOJOWfVQ3GAV1gYCNVLk0VbrGF-Poy-ADmG05yzrdijs954PlhWm-Ya6268yBMomW-w_JSSYJCkJyFRDiQGsSkNEE59uqhSMJVt9jDUVhsYfHFWBlBttNmQAM3nD7avHZs3Yneovvjlu3PeXW6eKPR7xnt1Dz1bGhJTZAlPIviNI7C_15ff0Y68g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2860845754</pqid></control><display><type>article</type><title>Sign Language Animation Splicing Model Based on LpTransformer Network</title><source>DOAJ Directory of Open Access Journals</source><creator>Huang, Hanqiang ; Xing, Yunbing ; Shen, Jianfei ; Fan, Feiyi</creator><creatorcontrib>Huang, Hanqiang ; Xing, Yunbing ; Shen, Jianfei ; Fan, Feiyi</creatorcontrib><description>Sign language animation splicing is a hot topic.With the continuous development of machine learning technology, especially the gradual maturity of deep learning related technologies, the speed and quality of sign language animation splicing are constantly improving.When splicing sign language words into sentences, the corresponding animation also needs to be spliced.Traditional algorithms use distance loss to find the best splicing position when splicing animation, and use linear or spherical interpolation to generate transition frames.This splicing algorithm not only has obvious defects in efficiency and flexibility, but also gene-rates unnatural sign language animation.In order to solve the above problems, LpTransformer model is proposed to predict the splicing position and generate transition frames.Experiment results show that the prediction accuracy of LpTransformer's transition frames reaches 99%,which is superior to ConvS2S,LSTM and Transformer, and its splicing speed is five times faster than Transfor</description><identifier>ISSN: 1002-137X</identifier><language>chi</language><publisher>Chongqing: Guojia Kexue Jishu Bu</publisher><subject>Algorithms ; Animation ; Deep learning ; Frames ; Interpolation ; Machine learning ; Sentences ; Transformers</subject><ispartof>Ji suan ji ke xue, 2023-01, Vol.50 (9), p.184</ispartof><rights>Copyright Guojia Kexue Jishu Bu 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Huang, Hanqiang</creatorcontrib><creatorcontrib>Xing, Yunbing</creatorcontrib><creatorcontrib>Shen, Jianfei</creatorcontrib><creatorcontrib>Fan, Feiyi</creatorcontrib><title>Sign Language Animation Splicing Model Based on LpTransformer Network</title><title>Ji suan ji ke xue</title><description>Sign language animation splicing is a hot topic.With the continuous development of machine learning technology, especially the gradual maturity of deep learning related technologies, the speed and quality of sign language animation splicing are constantly improving.When splicing sign language words into sentences, the corresponding animation also needs to be spliced.Traditional algorithms use distance loss to find the best splicing position when splicing animation, and use linear or spherical interpolation to generate transition frames.This splicing algorithm not only has obvious defects in efficiency and flexibility, but also gene-rates unnatural sign language animation.In order to solve the above problems, LpTransformer model is proposed to predict the splicing position and generate transition frames.Experiment results show that the prediction accuracy of LpTransformer's transition frames reaches 99%,which is superior to ConvS2S,LSTM and Transformer, and its splicing speed is five times faster than Transfor</description><subject>Algorithms</subject><subject>Animation</subject><subject>Deep learning</subject><subject>Frames</subject><subject>Interpolation</subject><subject>Machine learning</subject><subject>Sentences</subject><subject>Transformers</subject><issn>1002-137X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNir0OgjAURjtoIlHe4SbOJOWfVQ3GAV1gYCNVLk0VbrGF-Poy-ADmG05yzrdijs954PlhWm-Ya6268yBMomW-w_JSSYJCkJyFRDiQGsSkNEE59uqhSMJVt9jDUVhsYfHFWBlBttNmQAM3nD7avHZs3Yneovvjlu3PeXW6eKPR7xnt1Dz1bGhJTZAlPIviNI7C_15ff0Y68g</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Huang, Hanqiang</creator><creator>Xing, Yunbing</creator><creator>Shen, Jianfei</creator><creator>Fan, Feiyi</creator><general>Guojia Kexue Jishu Bu</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230101</creationdate><title>Sign Language Animation Splicing Model Based on LpTransformer Network</title><author>Huang, Hanqiang ; Xing, Yunbing ; Shen, Jianfei ; Fan, Feiyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28608457543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Animation</topic><topic>Deep learning</topic><topic>Frames</topic><topic>Interpolation</topic><topic>Machine learning</topic><topic>Sentences</topic><topic>Transformers</topic><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hanqiang</creatorcontrib><creatorcontrib>Xing, Yunbing</creatorcontrib><creatorcontrib>Shen, Jianfei</creatorcontrib><creatorcontrib>Fan, Feiyi</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Ji suan ji ke xue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hanqiang</au><au>Xing, Yunbing</au><au>Shen, Jianfei</au><au>Fan, Feiyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sign Language Animation Splicing Model Based on LpTransformer Network</atitle><jtitle>Ji suan ji ke xue</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>50</volume><issue>9</issue><spage>184</spage><pages>184-</pages><issn>1002-137X</issn><abstract>Sign language animation splicing is a hot topic.With the continuous development of machine learning technology, especially the gradual maturity of deep learning related technologies, the speed and quality of sign language animation splicing are constantly improving.When splicing sign language words into sentences, the corresponding animation also needs to be spliced.Traditional algorithms use distance loss to find the best splicing position when splicing animation, and use linear or spherical interpolation to generate transition frames.This splicing algorithm not only has obvious defects in efficiency and flexibility, but also gene-rates unnatural sign language animation.In order to solve the above problems, LpTransformer model is proposed to predict the splicing position and generate transition frames.Experiment results show that the prediction accuracy of LpTransformer's transition frames reaches 99%,which is superior to ConvS2S,LSTM and Transformer, and its splicing speed is five times faster than Transfor</abstract><cop>Chongqing</cop><pub>Guojia Kexue Jishu Bu</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1002-137X |
ispartof | Ji suan ji ke xue, 2023-01, Vol.50 (9), p.184 |
issn | 1002-137X |
language | chi |
recordid | cdi_proquest_journals_2860845754 |
source | DOAJ Directory of Open Access Journals |
subjects | Algorithms Animation Deep learning Frames Interpolation Machine learning Sentences Transformers |
title | Sign Language Animation Splicing Model Based on LpTransformer Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A03%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sign%20Language%20Animation%20Splicing%20Model%20Based%20on%20LpTransformer%20Network&rft.jtitle=Ji%20suan%20ji%20ke%20xue&rft.au=Huang,%20Hanqiang&rft.date=2023-01-01&rft.volume=50&rft.issue=9&rft.spage=184&rft.pages=184-&rft.issn=1002-137X&rft_id=info:doi/&rft_dat=%3Cproquest%3E2860845754%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2860845754&rft_id=info:pmid/&rfr_iscdi=true |