In Situ Growth of Imine‐Bridged Anion‐Selective COF/AAO Membrane for Ion Current Rectification and Nanofluidic Osmotic Energy Conversion

Facing the energy crisis, using the salinity gradient between seawater and freshwater for osmotic energy conversion is a direct way to obtain energy. So far, most nanofluidic membranes utilized for osmotic energy generation are cation‐selective. Given that both anion‐ and cation‐selective membranes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-09, Vol.33 (36), p.n/a
Hauptverfasser: Chen, Mengyuan, Yang, Kun, Wang, Jin, Sun, Hanjun, Xia, Xing‐Hua, Wang, Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 36
container_start_page
container_title Advanced functional materials
container_volume 33
creator Chen, Mengyuan
Yang, Kun
Wang, Jin
Sun, Hanjun
Xia, Xing‐Hua
Wang, Chen
description Facing the energy crisis, using the salinity gradient between seawater and freshwater for osmotic energy conversion is a direct way to obtain energy. So far, most nanofluidic membranes utilized for osmotic energy generation are cation‐selective. Given that both anion‐ and cation‐selective membranes have the identical importance for energy conversion devices, it is of great significance to develop anion‐selective membranes. Herein, an anion‐selective membrane is synthesized by in situ growth of imine‐bridged covalent organic framework (COF) on ordered anodic aluminum oxide (AAO) at room temperature. The imine groups and residual amino groups of COF can combine with protons in neutral solution, enabling the COF positively charged and efficiently transport of anions. Particularly, due to the asymmetry in the charge and structure of COF/AAO, the as‐prepared membrane exhibits excellent ionic current rectification property, which can inhibit ion concentration polarization effectively and possess high ion selectivity and permeability. Using the present COF/AAO membrane, salinity gradient energy can be successfully harvested from solutions with high salt content, and the output power density reached 17.95W m−2 under a 500‐fold salinity gradient. The study provides a new avenue for construction and application of anion‐selective membranes in the smart ion transport and efficient energy conversion. An anion‐selective membrane is synthesized by in situ growth of imine‐based covalent organic frameworks (COFs) on ordered anodic aluminium oxide (AAO) at room temperature. Due to the asymmetry of the COF/AAO hybrid arising from charge and structure, the present nanofluidic membrane exhibits unique ionic current rectification property as well as excellent osmotic energy conversion performance.
doi_str_mv 10.1002/adfm.202302427
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2860595609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2860595609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-4c0c6ea0dcd6d37036bce66688a2b79b6df6d5823c432d8ea952bfad3719233f3</originalsourceid><addsrcrecordid>eNqFkEFPAjEQhTdGExG9em7iGei20N09risgCUgimnjbdNsplrAtdncx3PwBHvyN_hJLMHj09OYl35uZvCC4DnE3xJj0uFRll2BCMemT6CRohSxkHe_i0-McvpwHF1W1wjiMItpvBZ8Tgxa6btDY2ff6FVmFJqU28P3xdeu0XIJEqdHWeL-ANYhabwFl81EvTedoBmXhuAGkrEMTa1DWOAemRo97UGnBax9F3Ej0wI1V60ZLLdC8Km3tdWjALXcos2YLrvLkZXCm-LqCq19tB8-j4VN235nOx5MsnXYE9W93-gILBhxLIZmkEaasEMAYi2NOiigpmFRMDmJCRZ8SGQNPBqRQ3KNhQihVtB3cHPZunH1roKrzlW2c8SdzEjM8SAYMJ57qHijhbFU5UPnG6ZK7XR7ifN94vm88PzbuA8kh8K7XsPuHztO70ewv-wO7bYfl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2860595609</pqid></control><display><type>article</type><title>In Situ Growth of Imine‐Bridged Anion‐Selective COF/AAO Membrane for Ion Current Rectification and Nanofluidic Osmotic Energy Conversion</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Mengyuan ; Yang, Kun ; Wang, Jin ; Sun, Hanjun ; Xia, Xing‐Hua ; Wang, Chen</creator><creatorcontrib>Chen, Mengyuan ; Yang, Kun ; Wang, Jin ; Sun, Hanjun ; Xia, Xing‐Hua ; Wang, Chen</creatorcontrib><description>Facing the energy crisis, using the salinity gradient between seawater and freshwater for osmotic energy conversion is a direct way to obtain energy. So far, most nanofluidic membranes utilized for osmotic energy generation are cation‐selective. Given that both anion‐ and cation‐selective membranes have the identical importance for energy conversion devices, it is of great significance to develop anion‐selective membranes. Herein, an anion‐selective membrane is synthesized by in situ growth of imine‐bridged covalent organic framework (COF) on ordered anodic aluminum oxide (AAO) at room temperature. The imine groups and residual amino groups of COF can combine with protons in neutral solution, enabling the COF positively charged and efficiently transport of anions. Particularly, due to the asymmetry in the charge and structure of COF/AAO, the as‐prepared membrane exhibits excellent ionic current rectification property, which can inhibit ion concentration polarization effectively and possess high ion selectivity and permeability. Using the present COF/AAO membrane, salinity gradient energy can be successfully harvested from solutions with high salt content, and the output power density reached 17.95W m−2 under a 500‐fold salinity gradient. The study provides a new avenue for construction and application of anion‐selective membranes in the smart ion transport and efficient energy conversion. An anion‐selective membrane is synthesized by in situ growth of imine‐based covalent organic frameworks (COFs) on ordered anodic aluminium oxide (AAO) at room temperature. Due to the asymmetry of the COF/AAO hybrid arising from charge and structure, the present nanofluidic membrane exhibits unique ionic current rectification property as well as excellent osmotic energy conversion performance.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202302427</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Aluminum oxide ; Anions ; anion‐selective ; Cations ; covalent organic frameworks ; Energy ; Energy conversion ; Fluidics ; Ion concentration ; ion current rectification ; Ion currents ; Ion transport ; Ions ; Materials science ; Membranes ; nanofluidics ; Nanofluids ; osmotic energy conversion ; Room temperature ; Salinity ; Seawater</subject><ispartof>Advanced functional materials, 2023-09, Vol.33 (36), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-4c0c6ea0dcd6d37036bce66688a2b79b6df6d5823c432d8ea952bfad3719233f3</citedby><cites>FETCH-LOGICAL-c3177-4c0c6ea0dcd6d37036bce66688a2b79b6df6d5823c432d8ea952bfad3719233f3</cites><orcidid>0000-0001-6544-4065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202302427$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202302427$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Chen, Mengyuan</creatorcontrib><creatorcontrib>Yang, Kun</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Sun, Hanjun</creatorcontrib><creatorcontrib>Xia, Xing‐Hua</creatorcontrib><creatorcontrib>Wang, Chen</creatorcontrib><title>In Situ Growth of Imine‐Bridged Anion‐Selective COF/AAO Membrane for Ion Current Rectification and Nanofluidic Osmotic Energy Conversion</title><title>Advanced functional materials</title><description>Facing the energy crisis, using the salinity gradient between seawater and freshwater for osmotic energy conversion is a direct way to obtain energy. So far, most nanofluidic membranes utilized for osmotic energy generation are cation‐selective. Given that both anion‐ and cation‐selective membranes have the identical importance for energy conversion devices, it is of great significance to develop anion‐selective membranes. Herein, an anion‐selective membrane is synthesized by in situ growth of imine‐bridged covalent organic framework (COF) on ordered anodic aluminum oxide (AAO) at room temperature. The imine groups and residual amino groups of COF can combine with protons in neutral solution, enabling the COF positively charged and efficiently transport of anions. Particularly, due to the asymmetry in the charge and structure of COF/AAO, the as‐prepared membrane exhibits excellent ionic current rectification property, which can inhibit ion concentration polarization effectively and possess high ion selectivity and permeability. Using the present COF/AAO membrane, salinity gradient energy can be successfully harvested from solutions with high salt content, and the output power density reached 17.95W m−2 under a 500‐fold salinity gradient. The study provides a new avenue for construction and application of anion‐selective membranes in the smart ion transport and efficient energy conversion. An anion‐selective membrane is synthesized by in situ growth of imine‐based covalent organic frameworks (COFs) on ordered anodic aluminium oxide (AAO) at room temperature. Due to the asymmetry of the COF/AAO hybrid arising from charge and structure, the present nanofluidic membrane exhibits unique ionic current rectification property as well as excellent osmotic energy conversion performance.</description><subject>Aluminum oxide</subject><subject>Anions</subject><subject>anion‐selective</subject><subject>Cations</subject><subject>covalent organic frameworks</subject><subject>Energy</subject><subject>Energy conversion</subject><subject>Fluidics</subject><subject>Ion concentration</subject><subject>ion current rectification</subject><subject>Ion currents</subject><subject>Ion transport</subject><subject>Ions</subject><subject>Materials science</subject><subject>Membranes</subject><subject>nanofluidics</subject><subject>Nanofluids</subject><subject>osmotic energy conversion</subject><subject>Room temperature</subject><subject>Salinity</subject><subject>Seawater</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPAjEQhTdGExG9em7iGei20N09risgCUgimnjbdNsplrAtdncx3PwBHvyN_hJLMHj09OYl35uZvCC4DnE3xJj0uFRll2BCMemT6CRohSxkHe_i0-McvpwHF1W1wjiMItpvBZ8Tgxa6btDY2ff6FVmFJqU28P3xdeu0XIJEqdHWeL-ANYhabwFl81EvTedoBmXhuAGkrEMTa1DWOAemRo97UGnBax9F3Ej0wI1V60ZLLdC8Km3tdWjALXcos2YLrvLkZXCm-LqCq19tB8-j4VN235nOx5MsnXYE9W93-gILBhxLIZmkEaasEMAYi2NOiigpmFRMDmJCRZ8SGQNPBqRQ3KNhQihVtB3cHPZunH1roKrzlW2c8SdzEjM8SAYMJ57qHijhbFU5UPnG6ZK7XR7ifN94vm88PzbuA8kh8K7XsPuHztO70ewv-wO7bYfl</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Chen, Mengyuan</creator><creator>Yang, Kun</creator><creator>Wang, Jin</creator><creator>Sun, Hanjun</creator><creator>Xia, Xing‐Hua</creator><creator>Wang, Chen</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6544-4065</orcidid></search><sort><creationdate>20230901</creationdate><title>In Situ Growth of Imine‐Bridged Anion‐Selective COF/AAO Membrane for Ion Current Rectification and Nanofluidic Osmotic Energy Conversion</title><author>Chen, Mengyuan ; Yang, Kun ; Wang, Jin ; Sun, Hanjun ; Xia, Xing‐Hua ; Wang, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-4c0c6ea0dcd6d37036bce66688a2b79b6df6d5823c432d8ea952bfad3719233f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum oxide</topic><topic>Anions</topic><topic>anion‐selective</topic><topic>Cations</topic><topic>covalent organic frameworks</topic><topic>Energy</topic><topic>Energy conversion</topic><topic>Fluidics</topic><topic>Ion concentration</topic><topic>ion current rectification</topic><topic>Ion currents</topic><topic>Ion transport</topic><topic>Ions</topic><topic>Materials science</topic><topic>Membranes</topic><topic>nanofluidics</topic><topic>Nanofluids</topic><topic>osmotic energy conversion</topic><topic>Room temperature</topic><topic>Salinity</topic><topic>Seawater</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Mengyuan</creatorcontrib><creatorcontrib>Yang, Kun</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Sun, Hanjun</creatorcontrib><creatorcontrib>Xia, Xing‐Hua</creatorcontrib><creatorcontrib>Wang, Chen</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Mengyuan</au><au>Yang, Kun</au><au>Wang, Jin</au><au>Sun, Hanjun</au><au>Xia, Xing‐Hua</au><au>Wang, Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Growth of Imine‐Bridged Anion‐Selective COF/AAO Membrane for Ion Current Rectification and Nanofluidic Osmotic Energy Conversion</atitle><jtitle>Advanced functional materials</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>33</volume><issue>36</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Facing the energy crisis, using the salinity gradient between seawater and freshwater for osmotic energy conversion is a direct way to obtain energy. So far, most nanofluidic membranes utilized for osmotic energy generation are cation‐selective. Given that both anion‐ and cation‐selective membranes have the identical importance for energy conversion devices, it is of great significance to develop anion‐selective membranes. Herein, an anion‐selective membrane is synthesized by in situ growth of imine‐bridged covalent organic framework (COF) on ordered anodic aluminum oxide (AAO) at room temperature. The imine groups and residual amino groups of COF can combine with protons in neutral solution, enabling the COF positively charged and efficiently transport of anions. Particularly, due to the asymmetry in the charge and structure of COF/AAO, the as‐prepared membrane exhibits excellent ionic current rectification property, which can inhibit ion concentration polarization effectively and possess high ion selectivity and permeability. Using the present COF/AAO membrane, salinity gradient energy can be successfully harvested from solutions with high salt content, and the output power density reached 17.95W m−2 under a 500‐fold salinity gradient. The study provides a new avenue for construction and application of anion‐selective membranes in the smart ion transport and efficient energy conversion. An anion‐selective membrane is synthesized by in situ growth of imine‐based covalent organic frameworks (COFs) on ordered anodic aluminium oxide (AAO) at room temperature. Due to the asymmetry of the COF/AAO hybrid arising from charge and structure, the present nanofluidic membrane exhibits unique ionic current rectification property as well as excellent osmotic energy conversion performance.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202302427</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6544-4065</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-09, Vol.33 (36), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2860595609
source Wiley Online Library Journals Frontfile Complete
subjects Aluminum oxide
Anions
anion‐selective
Cations
covalent organic frameworks
Energy
Energy conversion
Fluidics
Ion concentration
ion current rectification
Ion currents
Ion transport
Ions
Materials science
Membranes
nanofluidics
Nanofluids
osmotic energy conversion
Room temperature
Salinity
Seawater
title In Situ Growth of Imine‐Bridged Anion‐Selective COF/AAO Membrane for Ion Current Rectification and Nanofluidic Osmotic Energy Conversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A03%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Growth%20of%20Imine%E2%80%90Bridged%20Anion%E2%80%90Selective%20COF/AAO%20Membrane%20for%20Ion%20Current%20Rectification%20and%20Nanofluidic%20Osmotic%20Energy%20Conversion&rft.jtitle=Advanced%20functional%20materials&rft.au=Chen,%20Mengyuan&rft.date=2023-09-01&rft.volume=33&rft.issue=36&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202302427&rft_dat=%3Cproquest_cross%3E2860595609%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2860595609&rft_id=info:pmid/&rfr_iscdi=true