Unsupervised bias discovery in medical image segmentation
It has recently been shown that deep learning models for anatomical segmentation in medical images can exhibit biases against certain sub-populations defined in terms of protected attributes like sex or ethnicity. In this context, auditing fairness of deep segmentation models becomes crucial. Howeve...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-09 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gaggion, Nicolás Echeveste, Rodrigo Mansilla, Lucas Milone, Diego H Ferrante, Enzo |
description | It has recently been shown that deep learning models for anatomical segmentation in medical images can exhibit biases against certain sub-populations defined in terms of protected attributes like sex or ethnicity. In this context, auditing fairness of deep segmentation models becomes crucial. However, such audit process generally requires access to ground-truth segmentation masks for the target population, which may not always be available, especially when going from development to deployment. Here we propose a new method to anticipate model biases in biomedical image segmentation in the absence of ground-truth annotations. Our unsupervised bias discovery method leverages the reverse classification accuracy framework to estimate segmentation quality. Through numerical experiments in synthetic and realistic scenarios we show how our method is able to successfully anticipate fairness issues in the absence of ground-truth labels, constituting a novel and valuable tool in this field. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2860457570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2860457570</sourcerecordid><originalsourceid>FETCH-proquest_journals_28604575703</originalsourceid><addsrcrecordid>eNqNykEKwjAQQNEgCBbtHQKuCzFp2roWxQPousRmLFPapGaSgrfXhQdw9Rfvr1gmlToUTSnlhuVEgxBCVrXUWmXseHeUZggLElj-QEPcInV-gfDm6PgEFjszcpxMD5ygn8BFE9G7HVs_zUiQ_7pl-8v5droWc_CvBBTbwafgvtTKphKlrnUt1H_XB85CNxE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2860457570</pqid></control><display><type>article</type><title>Unsupervised bias discovery in medical image segmentation</title><source>Free E- Journals</source><creator>Gaggion, Nicolás ; Echeveste, Rodrigo ; Mansilla, Lucas ; Milone, Diego H ; Ferrante, Enzo</creator><creatorcontrib>Gaggion, Nicolás ; Echeveste, Rodrigo ; Mansilla, Lucas ; Milone, Diego H ; Ferrante, Enzo</creatorcontrib><description>It has recently been shown that deep learning models for anatomical segmentation in medical images can exhibit biases against certain sub-populations defined in terms of protected attributes like sex or ethnicity. In this context, auditing fairness of deep segmentation models becomes crucial. However, such audit process generally requires access to ground-truth segmentation masks for the target population, which may not always be available, especially when going from development to deployment. Here we propose a new method to anticipate model biases in biomedical image segmentation in the absence of ground-truth annotations. Our unsupervised bias discovery method leverages the reverse classification accuracy framework to estimate segmentation quality. Through numerical experiments in synthetic and realistic scenarios we show how our method is able to successfully anticipate fairness issues in the absence of ground-truth labels, constituting a novel and valuable tool in this field.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bias ; Image segmentation ; Machine learning ; Medical imaging ; Target masking</subject><ispartof>arXiv.org, 2023-09</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Gaggion, Nicolás</creatorcontrib><creatorcontrib>Echeveste, Rodrigo</creatorcontrib><creatorcontrib>Mansilla, Lucas</creatorcontrib><creatorcontrib>Milone, Diego H</creatorcontrib><creatorcontrib>Ferrante, Enzo</creatorcontrib><title>Unsupervised bias discovery in medical image segmentation</title><title>arXiv.org</title><description>It has recently been shown that deep learning models for anatomical segmentation in medical images can exhibit biases against certain sub-populations defined in terms of protected attributes like sex or ethnicity. In this context, auditing fairness of deep segmentation models becomes crucial. However, such audit process generally requires access to ground-truth segmentation masks for the target population, which may not always be available, especially when going from development to deployment. Here we propose a new method to anticipate model biases in biomedical image segmentation in the absence of ground-truth annotations. Our unsupervised bias discovery method leverages the reverse classification accuracy framework to estimate segmentation quality. Through numerical experiments in synthetic and realistic scenarios we show how our method is able to successfully anticipate fairness issues in the absence of ground-truth labels, constituting a novel and valuable tool in this field.</description><subject>Bias</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Target masking</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNykEKwjAQQNEgCBbtHQKuCzFp2roWxQPousRmLFPapGaSgrfXhQdw9Rfvr1gmlToUTSnlhuVEgxBCVrXUWmXseHeUZggLElj-QEPcInV-gfDm6PgEFjszcpxMD5ygn8BFE9G7HVs_zUiQ_7pl-8v5droWc_CvBBTbwafgvtTKphKlrnUt1H_XB85CNxE</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Gaggion, Nicolás</creator><creator>Echeveste, Rodrigo</creator><creator>Mansilla, Lucas</creator><creator>Milone, Diego H</creator><creator>Ferrante, Enzo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230901</creationdate><title>Unsupervised bias discovery in medical image segmentation</title><author>Gaggion, Nicolás ; Echeveste, Rodrigo ; Mansilla, Lucas ; Milone, Diego H ; Ferrante, Enzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28604575703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bias</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Target masking</topic><toplevel>online_resources</toplevel><creatorcontrib>Gaggion, Nicolás</creatorcontrib><creatorcontrib>Echeveste, Rodrigo</creatorcontrib><creatorcontrib>Mansilla, Lucas</creatorcontrib><creatorcontrib>Milone, Diego H</creatorcontrib><creatorcontrib>Ferrante, Enzo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaggion, Nicolás</au><au>Echeveste, Rodrigo</au><au>Mansilla, Lucas</au><au>Milone, Diego H</au><au>Ferrante, Enzo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Unsupervised bias discovery in medical image segmentation</atitle><jtitle>arXiv.org</jtitle><date>2023-09-01</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>It has recently been shown that deep learning models for anatomical segmentation in medical images can exhibit biases against certain sub-populations defined in terms of protected attributes like sex or ethnicity. In this context, auditing fairness of deep segmentation models becomes crucial. However, such audit process generally requires access to ground-truth segmentation masks for the target population, which may not always be available, especially when going from development to deployment. Here we propose a new method to anticipate model biases in biomedical image segmentation in the absence of ground-truth annotations. Our unsupervised bias discovery method leverages the reverse classification accuracy framework to estimate segmentation quality. Through numerical experiments in synthetic and realistic scenarios we show how our method is able to successfully anticipate fairness issues in the absence of ground-truth labels, constituting a novel and valuable tool in this field.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2860457570 |
source | Free E- Journals |
subjects | Bias Image segmentation Machine learning Medical imaging Target masking |
title | Unsupervised bias discovery in medical image segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A30%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Unsupervised%20bias%20discovery%20in%20medical%20image%20segmentation&rft.jtitle=arXiv.org&rft.au=Gaggion,%20Nicol%C3%A1s&rft.date=2023-09-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2860457570%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2860457570&rft_id=info:pmid/&rfr_iscdi=true |