The benefits of predictive maintenance in manufacturing excellence: a case study to establish reliable methods for predicting failures

In the course of manufacturing excellence, decision makers are consistently confronted with the task of making choices that will enhance and meet industrial plant’s requirements. To this end, it is essential to maintain machines and equipment in a timely manner, which can prove to be one of the prim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2023-10, Vol.128 (7-8), p.3685-3690
Hauptverfasser: Meddaoui, Anwar, Hain, Mustapha, Hachmoud, Adil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3690
container_issue 7-8
container_start_page 3685
container_title International journal of advanced manufacturing technology
container_volume 128
creator Meddaoui, Anwar
Hain, Mustapha
Hachmoud, Adil
description In the course of manufacturing excellence, decision makers are consistently confronted with the task of making choices that will enhance and meet industrial plant’s requirements. To this end, it is essential to maintain machines and equipment in a timely manner, which can prove to be one of the primary challenges. Predictive maintenance (PdM) strategy can enable real-time maintenance, providing numerous benefits such as reduced downtime, lower costs, and improved production quality. This article tries to demonstrate efficient physical parameters used in PdM field. The paper presents a case study operated in industrial production process to compare between the most used algorithm in predicting equipment failures. Future research can improve prediction accuracy with other artificial intelligence tools.
doi_str_mv 10.1007/s00170-023-12086-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2860447714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2860447714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-99659033f3b81ad372865d023c3bae044fcdbf2879fe8b813631b9d3830ac6223</originalsourceid><addsrcrecordid>eNp9kM1OAyEUhYnRxFp9AVckrlF-WoZxZxr_kiZu6powzMXSTJkRGGNfwOcWrdGdKy7hnO9wD0LnjF4ySqurRCmrKKFcEMapkkQeoAmbCUEEZfNDNKFcKiIqqY7RSUqbIpdMqgn6WK0BNxDA-Zxw7_AQofU2-zfAW-NDhmCCBexDuYbRGZvH6MMLhncLXQfl7RobbE0CnPLY7nDuMaRsms6nNY7Q-TIWFuR13ybs-vgbUSjO-G6MkE7RkTNdgrOfc4qe725XiweyfLp_XNwsiRVSZFLXcl5TIZxoFDOtqLiS87ZsbUVjgM5mzraN46qqHagiKSbW1K1QghorORdTdLHnDrF_Hcs_9aYfYyiRuqAKoKpKa1PE9yob-5QiOD1EvzVxpxnVX33rfd-6JOvvvrUsJrE3peGrIIh_6H9cn_tJhQk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2860447714</pqid></control><display><type>article</type><title>The benefits of predictive maintenance in manufacturing excellence: a case study to establish reliable methods for predicting failures</title><source>Springer Nature - Complete Springer Journals</source><creator>Meddaoui, Anwar ; Hain, Mustapha ; Hachmoud, Adil</creator><creatorcontrib>Meddaoui, Anwar ; Hain, Mustapha ; Hachmoud, Adil</creatorcontrib><description>In the course of manufacturing excellence, decision makers are consistently confronted with the task of making choices that will enhance and meet industrial plant’s requirements. To this end, it is essential to maintain machines and equipment in a timely manner, which can prove to be one of the primary challenges. Predictive maintenance (PdM) strategy can enable real-time maintenance, providing numerous benefits such as reduced downtime, lower costs, and improved production quality. This article tries to demonstrate efficient physical parameters used in PdM field. The paper presents a case study operated in industrial production process to compare between the most used algorithm in predicting equipment failures. Future research can improve prediction accuracy with other artificial intelligence tools.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-023-12086-6</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Advanced manufacturing technologies ; Algorithms ; Application ; Artificial intelligence ; Brain ; Breakdowns ; CAE) and Design ; Case studies ; Computer-Aided Engineering (CAD ; Cost control ; Cost reduction ; Data analysis ; Decision making ; Deep learning ; Engineering ; Failure ; Industrial and Production Engineering ; Industrial plants ; Literature reviews ; Machine learning ; Maintenance management ; Manufacturing ; Manufacturing excellence ; Mechanical Engineering ; Media Management ; Monitoring systems ; Neural networks ; Physical properties ; Predictive maintenance ; Preventive maintenance</subject><ispartof>International journal of advanced manufacturing technology, 2023-10, Vol.128 (7-8), p.3685-3690</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-99659033f3b81ad372865d023c3bae044fcdbf2879fe8b813631b9d3830ac6223</citedby><cites>FETCH-LOGICAL-c363t-99659033f3b81ad372865d023c3bae044fcdbf2879fe8b813631b9d3830ac6223</cites><orcidid>0000-0002-7450-1583 ; 0000-0003-1916-565X ; 0000-0001-9308-1679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-023-12086-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-023-12086-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Meddaoui, Anwar</creatorcontrib><creatorcontrib>Hain, Mustapha</creatorcontrib><creatorcontrib>Hachmoud, Adil</creatorcontrib><title>The benefits of predictive maintenance in manufacturing excellence: a case study to establish reliable methods for predicting failures</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>In the course of manufacturing excellence, decision makers are consistently confronted with the task of making choices that will enhance and meet industrial plant’s requirements. To this end, it is essential to maintain machines and equipment in a timely manner, which can prove to be one of the primary challenges. Predictive maintenance (PdM) strategy can enable real-time maintenance, providing numerous benefits such as reduced downtime, lower costs, and improved production quality. This article tries to demonstrate efficient physical parameters used in PdM field. The paper presents a case study operated in industrial production process to compare between the most used algorithm in predicting equipment failures. Future research can improve prediction accuracy with other artificial intelligence tools.</description><subject>Advanced manufacturing technologies</subject><subject>Algorithms</subject><subject>Application</subject><subject>Artificial intelligence</subject><subject>Brain</subject><subject>Breakdowns</subject><subject>CAE) and Design</subject><subject>Case studies</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Cost control</subject><subject>Cost reduction</subject><subject>Data analysis</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Engineering</subject><subject>Failure</subject><subject>Industrial and Production Engineering</subject><subject>Industrial plants</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Maintenance management</subject><subject>Manufacturing</subject><subject>Manufacturing excellence</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Monitoring systems</subject><subject>Neural networks</subject><subject>Physical properties</subject><subject>Predictive maintenance</subject><subject>Preventive maintenance</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1OAyEUhYnRxFp9AVckrlF-WoZxZxr_kiZu6powzMXSTJkRGGNfwOcWrdGdKy7hnO9wD0LnjF4ySqurRCmrKKFcEMapkkQeoAmbCUEEZfNDNKFcKiIqqY7RSUqbIpdMqgn6WK0BNxDA-Zxw7_AQofU2-zfAW-NDhmCCBexDuYbRGZvH6MMLhncLXQfl7RobbE0CnPLY7nDuMaRsms6nNY7Q-TIWFuR13ybs-vgbUSjO-G6MkE7RkTNdgrOfc4qe725XiweyfLp_XNwsiRVSZFLXcl5TIZxoFDOtqLiS87ZsbUVjgM5mzraN46qqHagiKSbW1K1QghorORdTdLHnDrF_Hcs_9aYfYyiRuqAKoKpKa1PE9yob-5QiOD1EvzVxpxnVX33rfd-6JOvvvrUsJrE3peGrIIh_6H9cn_tJhQk</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Meddaoui, Anwar</creator><creator>Hain, Mustapha</creator><creator>Hachmoud, Adil</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-7450-1583</orcidid><orcidid>https://orcid.org/0000-0003-1916-565X</orcidid><orcidid>https://orcid.org/0000-0001-9308-1679</orcidid></search><sort><creationdate>20231001</creationdate><title>The benefits of predictive maintenance in manufacturing excellence: a case study to establish reliable methods for predicting failures</title><author>Meddaoui, Anwar ; Hain, Mustapha ; Hachmoud, Adil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-99659033f3b81ad372865d023c3bae044fcdbf2879fe8b813631b9d3830ac6223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Advanced manufacturing technologies</topic><topic>Algorithms</topic><topic>Application</topic><topic>Artificial intelligence</topic><topic>Brain</topic><topic>Breakdowns</topic><topic>CAE) and Design</topic><topic>Case studies</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Cost control</topic><topic>Cost reduction</topic><topic>Data analysis</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Engineering</topic><topic>Failure</topic><topic>Industrial and Production Engineering</topic><topic>Industrial plants</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Maintenance management</topic><topic>Manufacturing</topic><topic>Manufacturing excellence</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Monitoring systems</topic><topic>Neural networks</topic><topic>Physical properties</topic><topic>Predictive maintenance</topic><topic>Preventive maintenance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meddaoui, Anwar</creatorcontrib><creatorcontrib>Hain, Mustapha</creatorcontrib><creatorcontrib>Hachmoud, Adil</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meddaoui, Anwar</au><au>Hain, Mustapha</au><au>Hachmoud, Adil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The benefits of predictive maintenance in manufacturing excellence: a case study to establish reliable methods for predicting failures</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>128</volume><issue>7-8</issue><spage>3685</spage><epage>3690</epage><pages>3685-3690</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>In the course of manufacturing excellence, decision makers are consistently confronted with the task of making choices that will enhance and meet industrial plant’s requirements. To this end, it is essential to maintain machines and equipment in a timely manner, which can prove to be one of the primary challenges. Predictive maintenance (PdM) strategy can enable real-time maintenance, providing numerous benefits such as reduced downtime, lower costs, and improved production quality. This article tries to demonstrate efficient physical parameters used in PdM field. The paper presents a case study operated in industrial production process to compare between the most used algorithm in predicting equipment failures. Future research can improve prediction accuracy with other artificial intelligence tools.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-023-12086-6</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7450-1583</orcidid><orcidid>https://orcid.org/0000-0003-1916-565X</orcidid><orcidid>https://orcid.org/0000-0001-9308-1679</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2023-10, Vol.128 (7-8), p.3685-3690
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2860447714
source Springer Nature - Complete Springer Journals
subjects Advanced manufacturing technologies
Algorithms
Application
Artificial intelligence
Brain
Breakdowns
CAE) and Design
Case studies
Computer-Aided Engineering (CAD
Cost control
Cost reduction
Data analysis
Decision making
Deep learning
Engineering
Failure
Industrial and Production Engineering
Industrial plants
Literature reviews
Machine learning
Maintenance management
Manufacturing
Manufacturing excellence
Mechanical Engineering
Media Management
Monitoring systems
Neural networks
Physical properties
Predictive maintenance
Preventive maintenance
title The benefits of predictive maintenance in manufacturing excellence: a case study to establish reliable methods for predicting failures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A23%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20benefits%20of%20predictive%20maintenance%20in%20manufacturing%20excellence:%20a%20case%20study%20to%20establish%20reliable%20methods%20for%20predicting%20failures&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Meddaoui,%20Anwar&rft.date=2023-10-01&rft.volume=128&rft.issue=7-8&rft.spage=3685&rft.epage=3690&rft.pages=3685-3690&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-023-12086-6&rft_dat=%3Cproquest_cross%3E2860447714%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2860447714&rft_id=info:pmid/&rfr_iscdi=true