Crystal plasticity–based finite element modeling and experimental study for high strain rate microscale laser shock clinching of copper foil
The microscale laser shock clinching (LSC) is a promising micro-forming technology that enables the deformation-based joining of ultra-thin sheets. In this research, a numerical crystal plasticity model of the LSC process at ultra-high strain rates is established to incorporate the actual grain size...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2023-10, Vol.128 (7-8), p.3427-3439 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3439 |
---|---|
container_issue | 7-8 |
container_start_page | 3427 |
container_title | International journal of advanced manufacturing technology |
container_volume | 128 |
creator | Hou, Yaxuan Wang, Jianfeng Ji, Zhong Zhang, Haiming Lu, Guoxin Zhang, Cunsheng |
description | The microscale laser shock clinching (LSC) is a promising micro-forming technology that enables the deformation-based joining of ultra-thin sheets. In this research, a numerical crystal plasticity model of the LSC process at ultra-high strain rates is established to incorporate the actual grain size of the material and the anisotropic characteristics caused by different initial grain orientations. The simulations are in good agreement with the experiments, indicating that the crystal plasticity finite element method (CPFEM) can be used to study plastic deformation and predict the joint geometry during the LSC process. The results show that the joint can be divided into the material inflow zone, the interlock forming zone, and the material stacking zone. The material at the neck and underside experiences the most severe thinning and is prone to failure as being located at the junction, where the material flows in opposite directions on both sides. It is also found that the holes with different diameter-to-depth ratios in the perforated steel sheets greatly affect the neck thickness, a key mechanical strength factor in formed joints. |
doi_str_mv | 10.1007/s00170-023-12165-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2860447713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2860447713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-dc1afb3c68dd9c31878d453217cb2f559d0946a1f2d5f51ff0777fcea871a2b93</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuA62oubZIuZfAGA250HdJcphk7bU06YHc-gRvf0CcxtYI7V-GE__sO5wfgHKNLjBC_ighhjjJEaIYJZkUmDsAC55RmFOHiECwQYSKjnIljcBLjNsUZZmIBPlZhjINqYN-oOHjth_Hr_bNS0RrofOsHC21jd7Yd4K4ztvHtBqrWQPvW2-Cn_8TGYW9G6LoAa7-p0xiUb2FQCd55HbqoVWNhWmADjHWnX6BOIl1Pss5B3fVJlnjfnIIjp5poz37fJXi-vXla3Wfrx7uH1fU605TRITMaK1dRzYQxpaZYcGHyghLMdUVcUZQGlTlT2BFTuAI7hzjnTlslOFakKukSXMzePnSvexsHue32oU0rJREM5TnnmKYUmVPTDTFYJ_t0swqjxEhOvcu5d5l6lz-9S5EgOkMxhduNDX_qf6hvj2yKOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2860447713</pqid></control><display><type>article</type><title>Crystal plasticity–based finite element modeling and experimental study for high strain rate microscale laser shock clinching of copper foil</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hou, Yaxuan ; Wang, Jianfeng ; Ji, Zhong ; Zhang, Haiming ; Lu, Guoxin ; Zhang, Cunsheng</creator><creatorcontrib>Hou, Yaxuan ; Wang, Jianfeng ; Ji, Zhong ; Zhang, Haiming ; Lu, Guoxin ; Zhang, Cunsheng</creatorcontrib><description>The microscale laser shock clinching (LSC) is a promising micro-forming technology that enables the deformation-based joining of ultra-thin sheets. In this research, a numerical crystal plasticity model of the LSC process at ultra-high strain rates is established to incorporate the actual grain size of the material and the anisotropic characteristics caused by different initial grain orientations. The simulations are in good agreement with the experiments, indicating that the crystal plasticity finite element method (CPFEM) can be used to study plastic deformation and predict the joint geometry during the LSC process. The results show that the joint can be divided into the material inflow zone, the interlock forming zone, and the material stacking zone. The material at the neck and underside experiences the most severe thinning and is prone to failure as being located at the junction, where the material flows in opposite directions on both sides. It is also found that the holes with different diameter-to-depth ratios in the perforated steel sheets greatly affect the neck thickness, a key mechanical strength factor in formed joints.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-023-12165-8</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Advanced manufacturing technologies ; Aluminum ; CAE) and Design ; Clinching ; Computer-Aided Engineering (CAD ; Crystals ; Deformation ; Diameters ; Engineering ; Experiments ; Finite element analysis ; Finite element method ; Grain size ; High strain rate ; Industrial and Production Engineering ; Joint geometry ; Laser shock processing ; Lasers ; Manufacturing ; Materials science ; Mathematical models ; Mechanical Engineering ; Media Management ; Metal foils ; Metal forming ; Metal sheets ; Original Article ; Plastic deformation ; Plastic properties</subject><ispartof>International journal of advanced manufacturing technology, 2023-10, Vol.128 (7-8), p.3427-3439</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-dc1afb3c68dd9c31878d453217cb2f559d0946a1f2d5f51ff0777fcea871a2b93</citedby><cites>FETCH-LOGICAL-c363t-dc1afb3c68dd9c31878d453217cb2f559d0946a1f2d5f51ff0777fcea871a2b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-023-12165-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-023-12165-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Hou, Yaxuan</creatorcontrib><creatorcontrib>Wang, Jianfeng</creatorcontrib><creatorcontrib>Ji, Zhong</creatorcontrib><creatorcontrib>Zhang, Haiming</creatorcontrib><creatorcontrib>Lu, Guoxin</creatorcontrib><creatorcontrib>Zhang, Cunsheng</creatorcontrib><title>Crystal plasticity–based finite element modeling and experimental study for high strain rate microscale laser shock clinching of copper foil</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>The microscale laser shock clinching (LSC) is a promising micro-forming technology that enables the deformation-based joining of ultra-thin sheets. In this research, a numerical crystal plasticity model of the LSC process at ultra-high strain rates is established to incorporate the actual grain size of the material and the anisotropic characteristics caused by different initial grain orientations. The simulations are in good agreement with the experiments, indicating that the crystal plasticity finite element method (CPFEM) can be used to study plastic deformation and predict the joint geometry during the LSC process. The results show that the joint can be divided into the material inflow zone, the interlock forming zone, and the material stacking zone. The material at the neck and underside experiences the most severe thinning and is prone to failure as being located at the junction, where the material flows in opposite directions on both sides. It is also found that the holes with different diameter-to-depth ratios in the perforated steel sheets greatly affect the neck thickness, a key mechanical strength factor in formed joints.</description><subject>Advanced manufacturing technologies</subject><subject>Aluminum</subject><subject>CAE) and Design</subject><subject>Clinching</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Crystals</subject><subject>Deformation</subject><subject>Diameters</subject><subject>Engineering</subject><subject>Experiments</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Grain size</subject><subject>High strain rate</subject><subject>Industrial and Production Engineering</subject><subject>Joint geometry</subject><subject>Laser shock processing</subject><subject>Lasers</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Metal foils</subject><subject>Metal forming</subject><subject>Metal sheets</subject><subject>Original Article</subject><subject>Plastic deformation</subject><subject>Plastic properties</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtKxDAUhoMoOI6-gKuA62oubZIuZfAGA250HdJcphk7bU06YHc-gRvf0CcxtYI7V-GE__sO5wfgHKNLjBC_ighhjjJEaIYJZkUmDsAC55RmFOHiECwQYSKjnIljcBLjNsUZZmIBPlZhjINqYN-oOHjth_Hr_bNS0RrofOsHC21jd7Yd4K4ztvHtBqrWQPvW2-Cn_8TGYW9G6LoAa7-p0xiUb2FQCd55HbqoVWNhWmADjHWnX6BOIl1Pss5B3fVJlnjfnIIjp5poz37fJXi-vXla3Wfrx7uH1fU605TRITMaK1dRzYQxpaZYcGHyghLMdUVcUZQGlTlT2BFTuAI7hzjnTlslOFakKukSXMzePnSvexsHue32oU0rJREM5TnnmKYUmVPTDTFYJ_t0swqjxEhOvcu5d5l6lz-9S5EgOkMxhduNDX_qf6hvj2yKOA</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Hou, Yaxuan</creator><creator>Wang, Jianfeng</creator><creator>Ji, Zhong</creator><creator>Zhang, Haiming</creator><creator>Lu, Guoxin</creator><creator>Zhang, Cunsheng</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20231001</creationdate><title>Crystal plasticity–based finite element modeling and experimental study for high strain rate microscale laser shock clinching of copper foil</title><author>Hou, Yaxuan ; Wang, Jianfeng ; Ji, Zhong ; Zhang, Haiming ; Lu, Guoxin ; Zhang, Cunsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-dc1afb3c68dd9c31878d453217cb2f559d0946a1f2d5f51ff0777fcea871a2b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Advanced manufacturing technologies</topic><topic>Aluminum</topic><topic>CAE) and Design</topic><topic>Clinching</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Crystals</topic><topic>Deformation</topic><topic>Diameters</topic><topic>Engineering</topic><topic>Experiments</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Grain size</topic><topic>High strain rate</topic><topic>Industrial and Production Engineering</topic><topic>Joint geometry</topic><topic>Laser shock processing</topic><topic>Lasers</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Metal foils</topic><topic>Metal forming</topic><topic>Metal sheets</topic><topic>Original Article</topic><topic>Plastic deformation</topic><topic>Plastic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Yaxuan</creatorcontrib><creatorcontrib>Wang, Jianfeng</creatorcontrib><creatorcontrib>Ji, Zhong</creatorcontrib><creatorcontrib>Zhang, Haiming</creatorcontrib><creatorcontrib>Lu, Guoxin</creatorcontrib><creatorcontrib>Zhang, Cunsheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Yaxuan</au><au>Wang, Jianfeng</au><au>Ji, Zhong</au><au>Zhang, Haiming</au><au>Lu, Guoxin</au><au>Zhang, Cunsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal plasticity–based finite element modeling and experimental study for high strain rate microscale laser shock clinching of copper foil</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>128</volume><issue>7-8</issue><spage>3427</spage><epage>3439</epage><pages>3427-3439</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The microscale laser shock clinching (LSC) is a promising micro-forming technology that enables the deformation-based joining of ultra-thin sheets. In this research, a numerical crystal plasticity model of the LSC process at ultra-high strain rates is established to incorporate the actual grain size of the material and the anisotropic characteristics caused by different initial grain orientations. The simulations are in good agreement with the experiments, indicating that the crystal plasticity finite element method (CPFEM) can be used to study plastic deformation and predict the joint geometry during the LSC process. The results show that the joint can be divided into the material inflow zone, the interlock forming zone, and the material stacking zone. The material at the neck and underside experiences the most severe thinning and is prone to failure as being located at the junction, where the material flows in opposite directions on both sides. It is also found that the holes with different diameter-to-depth ratios in the perforated steel sheets greatly affect the neck thickness, a key mechanical strength factor in formed joints.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-023-12165-8</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2023-10, Vol.128 (7-8), p.3427-3439 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2860447713 |
source | SpringerLink Journals - AutoHoldings |
subjects | Advanced manufacturing technologies Aluminum CAE) and Design Clinching Computer-Aided Engineering (CAD Crystals Deformation Diameters Engineering Experiments Finite element analysis Finite element method Grain size High strain rate Industrial and Production Engineering Joint geometry Laser shock processing Lasers Manufacturing Materials science Mathematical models Mechanical Engineering Media Management Metal foils Metal forming Metal sheets Original Article Plastic deformation Plastic properties |
title | Crystal plasticity–based finite element modeling and experimental study for high strain rate microscale laser shock clinching of copper foil |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20plasticity%E2%80%93based%20finite%20element%20modeling%20and%20experimental%20study%20for%20high%20strain%20rate%20microscale%20laser%20shock%20clinching%20of%20copper%20foil&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Hou,%20Yaxuan&rft.date=2023-10-01&rft.volume=128&rft.issue=7-8&rft.spage=3427&rft.epage=3439&rft.pages=3427-3439&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-023-12165-8&rft_dat=%3Cproquest_cross%3E2860447713%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2860447713&rft_id=info:pmid/&rfr_iscdi=true |