Crystal plasticity–based finite element modeling and experimental study for high strain rate microscale laser shock clinching of copper foil

The microscale laser shock clinching (LSC) is a promising micro-forming technology that enables the deformation-based joining of ultra-thin sheets. In this research, a numerical crystal plasticity model of the LSC process at ultra-high strain rates is established to incorporate the actual grain size...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2023-10, Vol.128 (7-8), p.3427-3439
Hauptverfasser: Hou, Yaxuan, Wang, Jianfeng, Ji, Zhong, Zhang, Haiming, Lu, Guoxin, Zhang, Cunsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3439
container_issue 7-8
container_start_page 3427
container_title International journal of advanced manufacturing technology
container_volume 128
creator Hou, Yaxuan
Wang, Jianfeng
Ji, Zhong
Zhang, Haiming
Lu, Guoxin
Zhang, Cunsheng
description The microscale laser shock clinching (LSC) is a promising micro-forming technology that enables the deformation-based joining of ultra-thin sheets. In this research, a numerical crystal plasticity model of the LSC process at ultra-high strain rates is established to incorporate the actual grain size of the material and the anisotropic characteristics caused by different initial grain orientations. The simulations are in good agreement with the experiments, indicating that the crystal plasticity finite element method (CPFEM) can be used to study plastic deformation and predict the joint geometry during the LSC process. The results show that the joint can be divided into the material inflow zone, the interlock forming zone, and the material stacking zone. The material at the neck and underside experiences the most severe thinning and is prone to failure as being located at the junction, where the material flows in opposite directions on both sides. It is also found that the holes with different diameter-to-depth ratios in the perforated steel sheets greatly affect the neck thickness, a key mechanical strength factor in formed joints.
doi_str_mv 10.1007/s00170-023-12165-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2860447713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2860447713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-dc1afb3c68dd9c31878d453217cb2f559d0946a1f2d5f51ff0777fcea871a2b93</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuA62oubZIuZfAGA250HdJcphk7bU06YHc-gRvf0CcxtYI7V-GE__sO5wfgHKNLjBC_ighhjjJEaIYJZkUmDsAC55RmFOHiECwQYSKjnIljcBLjNsUZZmIBPlZhjINqYN-oOHjth_Hr_bNS0RrofOsHC21jd7Yd4K4ztvHtBqrWQPvW2-Cn_8TGYW9G6LoAa7-p0xiUb2FQCd55HbqoVWNhWmADjHWnX6BOIl1Pss5B3fVJlnjfnIIjp5poz37fJXi-vXla3Wfrx7uH1fU605TRITMaK1dRzYQxpaZYcGHyghLMdUVcUZQGlTlT2BFTuAI7hzjnTlslOFakKukSXMzePnSvexsHue32oU0rJREM5TnnmKYUmVPTDTFYJ_t0swqjxEhOvcu5d5l6lz-9S5EgOkMxhduNDX_qf6hvj2yKOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2860447713</pqid></control><display><type>article</type><title>Crystal plasticity–based finite element modeling and experimental study for high strain rate microscale laser shock clinching of copper foil</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hou, Yaxuan ; Wang, Jianfeng ; Ji, Zhong ; Zhang, Haiming ; Lu, Guoxin ; Zhang, Cunsheng</creator><creatorcontrib>Hou, Yaxuan ; Wang, Jianfeng ; Ji, Zhong ; Zhang, Haiming ; Lu, Guoxin ; Zhang, Cunsheng</creatorcontrib><description>The microscale laser shock clinching (LSC) is a promising micro-forming technology that enables the deformation-based joining of ultra-thin sheets. In this research, a numerical crystal plasticity model of the LSC process at ultra-high strain rates is established to incorporate the actual grain size of the material and the anisotropic characteristics caused by different initial grain orientations. The simulations are in good agreement with the experiments, indicating that the crystal plasticity finite element method (CPFEM) can be used to study plastic deformation and predict the joint geometry during the LSC process. The results show that the joint can be divided into the material inflow zone, the interlock forming zone, and the material stacking zone. The material at the neck and underside experiences the most severe thinning and is prone to failure as being located at the junction, where the material flows in opposite directions on both sides. It is also found that the holes with different diameter-to-depth ratios in the perforated steel sheets greatly affect the neck thickness, a key mechanical strength factor in formed joints.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-023-12165-8</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Advanced manufacturing technologies ; Aluminum ; CAE) and Design ; Clinching ; Computer-Aided Engineering (CAD ; Crystals ; Deformation ; Diameters ; Engineering ; Experiments ; Finite element analysis ; Finite element method ; Grain size ; High strain rate ; Industrial and Production Engineering ; Joint geometry ; Laser shock processing ; Lasers ; Manufacturing ; Materials science ; Mathematical models ; Mechanical Engineering ; Media Management ; Metal foils ; Metal forming ; Metal sheets ; Original Article ; Plastic deformation ; Plastic properties</subject><ispartof>International journal of advanced manufacturing technology, 2023-10, Vol.128 (7-8), p.3427-3439</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-dc1afb3c68dd9c31878d453217cb2f559d0946a1f2d5f51ff0777fcea871a2b93</citedby><cites>FETCH-LOGICAL-c363t-dc1afb3c68dd9c31878d453217cb2f559d0946a1f2d5f51ff0777fcea871a2b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-023-12165-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-023-12165-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Hou, Yaxuan</creatorcontrib><creatorcontrib>Wang, Jianfeng</creatorcontrib><creatorcontrib>Ji, Zhong</creatorcontrib><creatorcontrib>Zhang, Haiming</creatorcontrib><creatorcontrib>Lu, Guoxin</creatorcontrib><creatorcontrib>Zhang, Cunsheng</creatorcontrib><title>Crystal plasticity–based finite element modeling and experimental study for high strain rate microscale laser shock clinching of copper foil</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>The microscale laser shock clinching (LSC) is a promising micro-forming technology that enables the deformation-based joining of ultra-thin sheets. In this research, a numerical crystal plasticity model of the LSC process at ultra-high strain rates is established to incorporate the actual grain size of the material and the anisotropic characteristics caused by different initial grain orientations. The simulations are in good agreement with the experiments, indicating that the crystal plasticity finite element method (CPFEM) can be used to study plastic deformation and predict the joint geometry during the LSC process. The results show that the joint can be divided into the material inflow zone, the interlock forming zone, and the material stacking zone. The material at the neck and underside experiences the most severe thinning and is prone to failure as being located at the junction, where the material flows in opposite directions on both sides. It is also found that the holes with different diameter-to-depth ratios in the perforated steel sheets greatly affect the neck thickness, a key mechanical strength factor in formed joints.</description><subject>Advanced manufacturing technologies</subject><subject>Aluminum</subject><subject>CAE) and Design</subject><subject>Clinching</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Crystals</subject><subject>Deformation</subject><subject>Diameters</subject><subject>Engineering</subject><subject>Experiments</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Grain size</subject><subject>High strain rate</subject><subject>Industrial and Production Engineering</subject><subject>Joint geometry</subject><subject>Laser shock processing</subject><subject>Lasers</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Metal foils</subject><subject>Metal forming</subject><subject>Metal sheets</subject><subject>Original Article</subject><subject>Plastic deformation</subject><subject>Plastic properties</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtKxDAUhoMoOI6-gKuA62oubZIuZfAGA250HdJcphk7bU06YHc-gRvf0CcxtYI7V-GE__sO5wfgHKNLjBC_ighhjjJEaIYJZkUmDsAC55RmFOHiECwQYSKjnIljcBLjNsUZZmIBPlZhjINqYN-oOHjth_Hr_bNS0RrofOsHC21jd7Yd4K4ztvHtBqrWQPvW2-Cn_8TGYW9G6LoAa7-p0xiUb2FQCd55HbqoVWNhWmADjHWnX6BOIl1Pss5B3fVJlnjfnIIjp5poz37fJXi-vXla3Wfrx7uH1fU605TRITMaK1dRzYQxpaZYcGHyghLMdUVcUZQGlTlT2BFTuAI7hzjnTlslOFakKukSXMzePnSvexsHue32oU0rJREM5TnnmKYUmVPTDTFYJ_t0swqjxEhOvcu5d5l6lz-9S5EgOkMxhduNDX_qf6hvj2yKOA</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Hou, Yaxuan</creator><creator>Wang, Jianfeng</creator><creator>Ji, Zhong</creator><creator>Zhang, Haiming</creator><creator>Lu, Guoxin</creator><creator>Zhang, Cunsheng</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20231001</creationdate><title>Crystal plasticity–based finite element modeling and experimental study for high strain rate microscale laser shock clinching of copper foil</title><author>Hou, Yaxuan ; Wang, Jianfeng ; Ji, Zhong ; Zhang, Haiming ; Lu, Guoxin ; Zhang, Cunsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-dc1afb3c68dd9c31878d453217cb2f559d0946a1f2d5f51ff0777fcea871a2b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Advanced manufacturing technologies</topic><topic>Aluminum</topic><topic>CAE) and Design</topic><topic>Clinching</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Crystals</topic><topic>Deformation</topic><topic>Diameters</topic><topic>Engineering</topic><topic>Experiments</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Grain size</topic><topic>High strain rate</topic><topic>Industrial and Production Engineering</topic><topic>Joint geometry</topic><topic>Laser shock processing</topic><topic>Lasers</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Metal foils</topic><topic>Metal forming</topic><topic>Metal sheets</topic><topic>Original Article</topic><topic>Plastic deformation</topic><topic>Plastic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Yaxuan</creatorcontrib><creatorcontrib>Wang, Jianfeng</creatorcontrib><creatorcontrib>Ji, Zhong</creatorcontrib><creatorcontrib>Zhang, Haiming</creatorcontrib><creatorcontrib>Lu, Guoxin</creatorcontrib><creatorcontrib>Zhang, Cunsheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Yaxuan</au><au>Wang, Jianfeng</au><au>Ji, Zhong</au><au>Zhang, Haiming</au><au>Lu, Guoxin</au><au>Zhang, Cunsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal plasticity–based finite element modeling and experimental study for high strain rate microscale laser shock clinching of copper foil</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>128</volume><issue>7-8</issue><spage>3427</spage><epage>3439</epage><pages>3427-3439</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The microscale laser shock clinching (LSC) is a promising micro-forming technology that enables the deformation-based joining of ultra-thin sheets. In this research, a numerical crystal plasticity model of the LSC process at ultra-high strain rates is established to incorporate the actual grain size of the material and the anisotropic characteristics caused by different initial grain orientations. The simulations are in good agreement with the experiments, indicating that the crystal plasticity finite element method (CPFEM) can be used to study plastic deformation and predict the joint geometry during the LSC process. The results show that the joint can be divided into the material inflow zone, the interlock forming zone, and the material stacking zone. The material at the neck and underside experiences the most severe thinning and is prone to failure as being located at the junction, where the material flows in opposite directions on both sides. It is also found that the holes with different diameter-to-depth ratios in the perforated steel sheets greatly affect the neck thickness, a key mechanical strength factor in formed joints.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-023-12165-8</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2023-10, Vol.128 (7-8), p.3427-3439
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2860447713
source SpringerLink Journals - AutoHoldings
subjects Advanced manufacturing technologies
Aluminum
CAE) and Design
Clinching
Computer-Aided Engineering (CAD
Crystals
Deformation
Diameters
Engineering
Experiments
Finite element analysis
Finite element method
Grain size
High strain rate
Industrial and Production Engineering
Joint geometry
Laser shock processing
Lasers
Manufacturing
Materials science
Mathematical models
Mechanical Engineering
Media Management
Metal foils
Metal forming
Metal sheets
Original Article
Plastic deformation
Plastic properties
title Crystal plasticity–based finite element modeling and experimental study for high strain rate microscale laser shock clinching of copper foil
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20plasticity%E2%80%93based%20finite%20element%20modeling%20and%20experimental%20study%20for%20high%20strain%20rate%20microscale%20laser%20shock%20clinching%20of%20copper%20foil&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Hou,%20Yaxuan&rft.date=2023-10-01&rft.volume=128&rft.issue=7-8&rft.spage=3427&rft.epage=3439&rft.pages=3427-3439&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-023-12165-8&rft_dat=%3Cproquest_cross%3E2860447713%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2860447713&rft_id=info:pmid/&rfr_iscdi=true