A highly accurate artificial neural networks scheme for solving higher multi‐order fractal‐fractional differential equations based on generalized Caputo derivative
Artificial neural networks have great potential for learning and stability in the face of tiny input data changes. As a result, artificial intelligence techniques and modeling tools have a growing variety of applications. To estimate a solution for fractal‐fractional differential equations (FFDEs) o...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2023-10, Vol.124 (19), p.4371-4404 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4404 |
---|---|
container_issue | 19 |
container_start_page | 4371 |
container_title | International journal for numerical methods in engineering |
container_volume | 124 |
creator | Shloof, A. M. Ahmadian, A. Senu, N. Salahshour, Soheil Ibrahim, S. N. I. Pakdaman, M. |
description | Artificial neural networks have great potential for learning and stability in the face of tiny input data changes. As a result, artificial intelligence techniques and modeling tools have a growing variety of applications. To estimate a solution for fractal‐fractional differential equations (FFDEs) of high‐order linear (HOL) with variable coefficients, an iterative methodology based on a mix of a power series method and a neural network approach was applied in this study. In the algorithm's equation, an appropriate truncated series of the solution functions was replaced. To tackle the issue, this study uses a series expansion of an unidentified function, where this function is approximated using a neural architecture. Some examples were presented to illustrate the efficiency and usefulness of this technique to prove the concept's applicability. The proposed methodology was found to be very accurate when compared to other available traditional procedures. To determine the approximate solution to FFDEs‐HOL, the suggested technique is simple, highly efficient, and resilient. |
doi_str_mv | 10.1002/nme.7312 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2860222925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2860222925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2932-4d436fd685d0101026e1c3277e259a1d78d40de762ae87d7baac04d813515fed3</originalsourceid><addsrcrecordid>eNp1kU1OwzAQhS0EEqUgcQRLbNik2M6Pk2VV8ScV2MA6cu1x65LGrZ20KiuOwBFYcg6OwklwWrbIi_Gb-fw80kPonJIBJYRd1QsY8JiyA9SjpOARYYQfol4YFVFa5PQYnXg_J4TSlMQ99DXEMzOdVVsspGydaAAL1xhtpBEVriG0utJsrHv12MsZLABr674_va3Wpp7unoPDi7ZqzM_7h3UqKO2EbEQV9O5mbB1slNEaHNRNZw2rVnR9jyfCg8K2xlOoIXxn3oIciWXbWBy8zDpwazhFR1pUHs7-ah-93Fw_j-6i8dPt_Wg4jiQrYhYlKokzrbI8VYSGwzKgMmacA0sLQRXPVUIU8IwJyLniEyEkSVRO45SmGlTcRxd736WzqxZ8U85t68L6vmR5RhhjBUsDdbmnpLPeO9Dl0pmFcNuSkrLLoQw5lF0OAY326MZUsP2XKx8frnf8L2btkF4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2860222925</pqid></control><display><type>article</type><title>A highly accurate artificial neural networks scheme for solving higher multi‐order fractal‐fractional differential equations based on generalized Caputo derivative</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shloof, A. M. ; Ahmadian, A. ; Senu, N. ; Salahshour, Soheil ; Ibrahim, S. N. I. ; Pakdaman, M.</creator><creatorcontrib>Shloof, A. M. ; Ahmadian, A. ; Senu, N. ; Salahshour, Soheil ; Ibrahim, S. N. I. ; Pakdaman, M.</creatorcontrib><description>Artificial neural networks have great potential for learning and stability in the face of tiny input data changes. As a result, artificial intelligence techniques and modeling tools have a growing variety of applications. To estimate a solution for fractal‐fractional differential equations (FFDEs) of high‐order linear (HOL) with variable coefficients, an iterative methodology based on a mix of a power series method and a neural network approach was applied in this study. In the algorithm's equation, an appropriate truncated series of the solution functions was replaced. To tackle the issue, this study uses a series expansion of an unidentified function, where this function is approximated using a neural architecture. Some examples were presented to illustrate the efficiency and usefulness of this technique to prove the concept's applicability. The proposed methodology was found to be very accurate when compared to other available traditional procedures. To determine the approximate solution to FFDEs‐HOL, the suggested technique is simple, highly efficient, and resilient.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.7312</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Algorithms ; Artificial intelligence ; artificial neural network ; Artificial neural networks ; back‐propagation learning algorithm ; Differential equations ; Fractals ; Fractional calculus ; generalized Caputo fractal‐fractional derivative ; higher order fractal‐fractional differential equations ; Iterative methods ; Neural networks ; Power series ; Series expansion</subject><ispartof>International journal for numerical methods in engineering, 2023-10, Vol.124 (19), p.4371-4404</ispartof><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2932-4d436fd685d0101026e1c3277e259a1d78d40de762ae87d7baac04d813515fed3</citedby><cites>FETCH-LOGICAL-c2932-4d436fd685d0101026e1c3277e259a1d78d40de762ae87d7baac04d813515fed3</cites><orcidid>0000-0002-0106-7050 ; 0000-0001-8614-8281</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.7312$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.7312$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Shloof, A. M.</creatorcontrib><creatorcontrib>Ahmadian, A.</creatorcontrib><creatorcontrib>Senu, N.</creatorcontrib><creatorcontrib>Salahshour, Soheil</creatorcontrib><creatorcontrib>Ibrahim, S. N. I.</creatorcontrib><creatorcontrib>Pakdaman, M.</creatorcontrib><title>A highly accurate artificial neural networks scheme for solving higher multi‐order fractal‐fractional differential equations based on generalized Caputo derivative</title><title>International journal for numerical methods in engineering</title><description>Artificial neural networks have great potential for learning and stability in the face of tiny input data changes. As a result, artificial intelligence techniques and modeling tools have a growing variety of applications. To estimate a solution for fractal‐fractional differential equations (FFDEs) of high‐order linear (HOL) with variable coefficients, an iterative methodology based on a mix of a power series method and a neural network approach was applied in this study. In the algorithm's equation, an appropriate truncated series of the solution functions was replaced. To tackle the issue, this study uses a series expansion of an unidentified function, where this function is approximated using a neural architecture. Some examples were presented to illustrate the efficiency and usefulness of this technique to prove the concept's applicability. The proposed methodology was found to be very accurate when compared to other available traditional procedures. To determine the approximate solution to FFDEs‐HOL, the suggested technique is simple, highly efficient, and resilient.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>artificial neural network</subject><subject>Artificial neural networks</subject><subject>back‐propagation learning algorithm</subject><subject>Differential equations</subject><subject>Fractals</subject><subject>Fractional calculus</subject><subject>generalized Caputo fractal‐fractional derivative</subject><subject>higher order fractal‐fractional differential equations</subject><subject>Iterative methods</subject><subject>Neural networks</subject><subject>Power series</subject><subject>Series expansion</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kU1OwzAQhS0EEqUgcQRLbNik2M6Pk2VV8ScV2MA6cu1x65LGrZ20KiuOwBFYcg6OwklwWrbIi_Gb-fw80kPonJIBJYRd1QsY8JiyA9SjpOARYYQfol4YFVFa5PQYnXg_J4TSlMQ99DXEMzOdVVsspGydaAAL1xhtpBEVriG0utJsrHv12MsZLABr674_va3Wpp7unoPDi7ZqzM_7h3UqKO2EbEQV9O5mbB1slNEaHNRNZw2rVnR9jyfCg8K2xlOoIXxn3oIciWXbWBy8zDpwazhFR1pUHs7-ah-93Fw_j-6i8dPt_Wg4jiQrYhYlKokzrbI8VYSGwzKgMmacA0sLQRXPVUIU8IwJyLniEyEkSVRO45SmGlTcRxd736WzqxZ8U85t68L6vmR5RhhjBUsDdbmnpLPeO9Dl0pmFcNuSkrLLoQw5lF0OAY326MZUsP2XKx8frnf8L2btkF4</recordid><startdate>20231015</startdate><enddate>20231015</enddate><creator>Shloof, A. M.</creator><creator>Ahmadian, A.</creator><creator>Senu, N.</creator><creator>Salahshour, Soheil</creator><creator>Ibrahim, S. N. I.</creator><creator>Pakdaman, M.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0106-7050</orcidid><orcidid>https://orcid.org/0000-0001-8614-8281</orcidid></search><sort><creationdate>20231015</creationdate><title>A highly accurate artificial neural networks scheme for solving higher multi‐order fractal‐fractional differential equations based on generalized Caputo derivative</title><author>Shloof, A. M. ; Ahmadian, A. ; Senu, N. ; Salahshour, Soheil ; Ibrahim, S. N. I. ; Pakdaman, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2932-4d436fd685d0101026e1c3277e259a1d78d40de762ae87d7baac04d813515fed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>artificial neural network</topic><topic>Artificial neural networks</topic><topic>back‐propagation learning algorithm</topic><topic>Differential equations</topic><topic>Fractals</topic><topic>Fractional calculus</topic><topic>generalized Caputo fractal‐fractional derivative</topic><topic>higher order fractal‐fractional differential equations</topic><topic>Iterative methods</topic><topic>Neural networks</topic><topic>Power series</topic><topic>Series expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shloof, A. M.</creatorcontrib><creatorcontrib>Ahmadian, A.</creatorcontrib><creatorcontrib>Senu, N.</creatorcontrib><creatorcontrib>Salahshour, Soheil</creatorcontrib><creatorcontrib>Ibrahim, S. N. I.</creatorcontrib><creatorcontrib>Pakdaman, M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shloof, A. M.</au><au>Ahmadian, A.</au><au>Senu, N.</au><au>Salahshour, Soheil</au><au>Ibrahim, S. N. I.</au><au>Pakdaman, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A highly accurate artificial neural networks scheme for solving higher multi‐order fractal‐fractional differential equations based on generalized Caputo derivative</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2023-10-15</date><risdate>2023</risdate><volume>124</volume><issue>19</issue><spage>4371</spage><epage>4404</epage><pages>4371-4404</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Artificial neural networks have great potential for learning and stability in the face of tiny input data changes. As a result, artificial intelligence techniques and modeling tools have a growing variety of applications. To estimate a solution for fractal‐fractional differential equations (FFDEs) of high‐order linear (HOL) with variable coefficients, an iterative methodology based on a mix of a power series method and a neural network approach was applied in this study. In the algorithm's equation, an appropriate truncated series of the solution functions was replaced. To tackle the issue, this study uses a series expansion of an unidentified function, where this function is approximated using a neural architecture. Some examples were presented to illustrate the efficiency and usefulness of this technique to prove the concept's applicability. The proposed methodology was found to be very accurate when compared to other available traditional procedures. To determine the approximate solution to FFDEs‐HOL, the suggested technique is simple, highly efficient, and resilient.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/nme.7312</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-0106-7050</orcidid><orcidid>https://orcid.org/0000-0001-8614-8281</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2023-10, Vol.124 (19), p.4371-4404 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_journals_2860222925 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Artificial intelligence artificial neural network Artificial neural networks back‐propagation learning algorithm Differential equations Fractals Fractional calculus generalized Caputo fractal‐fractional derivative higher order fractal‐fractional differential equations Iterative methods Neural networks Power series Series expansion |
title | A highly accurate artificial neural networks scheme for solving higher multi‐order fractal‐fractional differential equations based on generalized Caputo derivative |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A30%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20highly%20accurate%20artificial%20neural%20networks%20scheme%20for%C2%A0solving%20higher%20multi%E2%80%90order%20fractal%E2%80%90fractional%20differential%20equations%20based%20on%20generalized%20Caputo%20derivative&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Shloof,%20A.%20M.&rft.date=2023-10-15&rft.volume=124&rft.issue=19&rft.spage=4371&rft.epage=4404&rft.pages=4371-4404&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.7312&rft_dat=%3Cproquest_cross%3E2860222925%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2860222925&rft_id=info:pmid/&rfr_iscdi=true |