A highly accurate artificial neural networks scheme for solving higher multi‐order fractal‐fractional differential equations based on generalized Caputo derivative

Artificial neural networks have great potential for learning and stability in the face of tiny input data changes. As a result, artificial intelligence techniques and modeling tools have a growing variety of applications. To estimate a solution for fractal‐fractional differential equations (FFDEs) o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2023-10, Vol.124 (19), p.4371-4404
Hauptverfasser: Shloof, A. M., Ahmadian, A., Senu, N., Salahshour, Soheil, Ibrahim, S. N. I., Pakdaman, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4404
container_issue 19
container_start_page 4371
container_title International journal for numerical methods in engineering
container_volume 124
creator Shloof, A. M.
Ahmadian, A.
Senu, N.
Salahshour, Soheil
Ibrahim, S. N. I.
Pakdaman, M.
description Artificial neural networks have great potential for learning and stability in the face of tiny input data changes. As a result, artificial intelligence techniques and modeling tools have a growing variety of applications. To estimate a solution for fractal‐fractional differential equations (FFDEs) of high‐order linear (HOL) with variable coefficients, an iterative methodology based on a mix of a power series method and a neural network approach was applied in this study. In the algorithm's equation, an appropriate truncated series of the solution functions was replaced. To tackle the issue, this study uses a series expansion of an unidentified function, where this function is approximated using a neural architecture. Some examples were presented to illustrate the efficiency and usefulness of this technique to prove the concept's applicability. The proposed methodology was found to be very accurate when compared to other available traditional procedures. To determine the approximate solution to FFDEs‐HOL, the suggested technique is simple, highly efficient, and resilient.
doi_str_mv 10.1002/nme.7312
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2860222925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2860222925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2932-4d436fd685d0101026e1c3277e259a1d78d40de762ae87d7baac04d813515fed3</originalsourceid><addsrcrecordid>eNp1kU1OwzAQhS0EEqUgcQRLbNik2M6Pk2VV8ScV2MA6cu1x65LGrZ20KiuOwBFYcg6OwklwWrbIi_Gb-fw80kPonJIBJYRd1QsY8JiyA9SjpOARYYQfol4YFVFa5PQYnXg_J4TSlMQ99DXEMzOdVVsspGydaAAL1xhtpBEVriG0utJsrHv12MsZLABr674_va3Wpp7unoPDi7ZqzM_7h3UqKO2EbEQV9O5mbB1slNEaHNRNZw2rVnR9jyfCg8K2xlOoIXxn3oIciWXbWBy8zDpwazhFR1pUHs7-ah-93Fw_j-6i8dPt_Wg4jiQrYhYlKokzrbI8VYSGwzKgMmacA0sLQRXPVUIU8IwJyLniEyEkSVRO45SmGlTcRxd736WzqxZ8U85t68L6vmR5RhhjBUsDdbmnpLPeO9Dl0pmFcNuSkrLLoQw5lF0OAY326MZUsP2XKx8frnf8L2btkF4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2860222925</pqid></control><display><type>article</type><title>A highly accurate artificial neural networks scheme for solving higher multi‐order fractal‐fractional differential equations based on generalized Caputo derivative</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shloof, A. M. ; Ahmadian, A. ; Senu, N. ; Salahshour, Soheil ; Ibrahim, S. N. I. ; Pakdaman, M.</creator><creatorcontrib>Shloof, A. M. ; Ahmadian, A. ; Senu, N. ; Salahshour, Soheil ; Ibrahim, S. N. I. ; Pakdaman, M.</creatorcontrib><description>Artificial neural networks have great potential for learning and stability in the face of tiny input data changes. As a result, artificial intelligence techniques and modeling tools have a growing variety of applications. To estimate a solution for fractal‐fractional differential equations (FFDEs) of high‐order linear (HOL) with variable coefficients, an iterative methodology based on a mix of a power series method and a neural network approach was applied in this study. In the algorithm's equation, an appropriate truncated series of the solution functions was replaced. To tackle the issue, this study uses a series expansion of an unidentified function, where this function is approximated using a neural architecture. Some examples were presented to illustrate the efficiency and usefulness of this technique to prove the concept's applicability. The proposed methodology was found to be very accurate when compared to other available traditional procedures. To determine the approximate solution to FFDEs‐HOL, the suggested technique is simple, highly efficient, and resilient.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.7312</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Artificial intelligence ; artificial neural network ; Artificial neural networks ; back‐propagation learning algorithm ; Differential equations ; Fractals ; Fractional calculus ; generalized Caputo fractal‐fractional derivative ; higher order fractal‐fractional differential equations ; Iterative methods ; Neural networks ; Power series ; Series expansion</subject><ispartof>International journal for numerical methods in engineering, 2023-10, Vol.124 (19), p.4371-4404</ispartof><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2932-4d436fd685d0101026e1c3277e259a1d78d40de762ae87d7baac04d813515fed3</citedby><cites>FETCH-LOGICAL-c2932-4d436fd685d0101026e1c3277e259a1d78d40de762ae87d7baac04d813515fed3</cites><orcidid>0000-0002-0106-7050 ; 0000-0001-8614-8281</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.7312$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.7312$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Shloof, A. M.</creatorcontrib><creatorcontrib>Ahmadian, A.</creatorcontrib><creatorcontrib>Senu, N.</creatorcontrib><creatorcontrib>Salahshour, Soheil</creatorcontrib><creatorcontrib>Ibrahim, S. N. I.</creatorcontrib><creatorcontrib>Pakdaman, M.</creatorcontrib><title>A highly accurate artificial neural networks scheme for solving higher multi‐order fractal‐fractional differential equations based on generalized Caputo derivative</title><title>International journal for numerical methods in engineering</title><description>Artificial neural networks have great potential for learning and stability in the face of tiny input data changes. As a result, artificial intelligence techniques and modeling tools have a growing variety of applications. To estimate a solution for fractal‐fractional differential equations (FFDEs) of high‐order linear (HOL) with variable coefficients, an iterative methodology based on a mix of a power series method and a neural network approach was applied in this study. In the algorithm's equation, an appropriate truncated series of the solution functions was replaced. To tackle the issue, this study uses a series expansion of an unidentified function, where this function is approximated using a neural architecture. Some examples were presented to illustrate the efficiency and usefulness of this technique to prove the concept's applicability. The proposed methodology was found to be very accurate when compared to other available traditional procedures. To determine the approximate solution to FFDEs‐HOL, the suggested technique is simple, highly efficient, and resilient.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>artificial neural network</subject><subject>Artificial neural networks</subject><subject>back‐propagation learning algorithm</subject><subject>Differential equations</subject><subject>Fractals</subject><subject>Fractional calculus</subject><subject>generalized Caputo fractal‐fractional derivative</subject><subject>higher order fractal‐fractional differential equations</subject><subject>Iterative methods</subject><subject>Neural networks</subject><subject>Power series</subject><subject>Series expansion</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kU1OwzAQhS0EEqUgcQRLbNik2M6Pk2VV8ScV2MA6cu1x65LGrZ20KiuOwBFYcg6OwklwWrbIi_Gb-fw80kPonJIBJYRd1QsY8JiyA9SjpOARYYQfol4YFVFa5PQYnXg_J4TSlMQ99DXEMzOdVVsspGydaAAL1xhtpBEVriG0utJsrHv12MsZLABr674_va3Wpp7unoPDi7ZqzM_7h3UqKO2EbEQV9O5mbB1slNEaHNRNZw2rVnR9jyfCg8K2xlOoIXxn3oIciWXbWBy8zDpwazhFR1pUHs7-ah-93Fw_j-6i8dPt_Wg4jiQrYhYlKokzrbI8VYSGwzKgMmacA0sLQRXPVUIU8IwJyLniEyEkSVRO45SmGlTcRxd736WzqxZ8U85t68L6vmR5RhhjBUsDdbmnpLPeO9Dl0pmFcNuSkrLLoQw5lF0OAY326MZUsP2XKx8frnf8L2btkF4</recordid><startdate>20231015</startdate><enddate>20231015</enddate><creator>Shloof, A. M.</creator><creator>Ahmadian, A.</creator><creator>Senu, N.</creator><creator>Salahshour, Soheil</creator><creator>Ibrahim, S. N. I.</creator><creator>Pakdaman, M.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0106-7050</orcidid><orcidid>https://orcid.org/0000-0001-8614-8281</orcidid></search><sort><creationdate>20231015</creationdate><title>A highly accurate artificial neural networks scheme for solving higher multi‐order fractal‐fractional differential equations based on generalized Caputo derivative</title><author>Shloof, A. M. ; Ahmadian, A. ; Senu, N. ; Salahshour, Soheil ; Ibrahim, S. N. I. ; Pakdaman, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2932-4d436fd685d0101026e1c3277e259a1d78d40de762ae87d7baac04d813515fed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>artificial neural network</topic><topic>Artificial neural networks</topic><topic>back‐propagation learning algorithm</topic><topic>Differential equations</topic><topic>Fractals</topic><topic>Fractional calculus</topic><topic>generalized Caputo fractal‐fractional derivative</topic><topic>higher order fractal‐fractional differential equations</topic><topic>Iterative methods</topic><topic>Neural networks</topic><topic>Power series</topic><topic>Series expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shloof, A. M.</creatorcontrib><creatorcontrib>Ahmadian, A.</creatorcontrib><creatorcontrib>Senu, N.</creatorcontrib><creatorcontrib>Salahshour, Soheil</creatorcontrib><creatorcontrib>Ibrahim, S. N. I.</creatorcontrib><creatorcontrib>Pakdaman, M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shloof, A. M.</au><au>Ahmadian, A.</au><au>Senu, N.</au><au>Salahshour, Soheil</au><au>Ibrahim, S. N. I.</au><au>Pakdaman, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A highly accurate artificial neural networks scheme for solving higher multi‐order fractal‐fractional differential equations based on generalized Caputo derivative</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2023-10-15</date><risdate>2023</risdate><volume>124</volume><issue>19</issue><spage>4371</spage><epage>4404</epage><pages>4371-4404</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Artificial neural networks have great potential for learning and stability in the face of tiny input data changes. As a result, artificial intelligence techniques and modeling tools have a growing variety of applications. To estimate a solution for fractal‐fractional differential equations (FFDEs) of high‐order linear (HOL) with variable coefficients, an iterative methodology based on a mix of a power series method and a neural network approach was applied in this study. In the algorithm's equation, an appropriate truncated series of the solution functions was replaced. To tackle the issue, this study uses a series expansion of an unidentified function, where this function is approximated using a neural architecture. Some examples were presented to illustrate the efficiency and usefulness of this technique to prove the concept's applicability. The proposed methodology was found to be very accurate when compared to other available traditional procedures. To determine the approximate solution to FFDEs‐HOL, the suggested technique is simple, highly efficient, and resilient.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/nme.7312</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-0106-7050</orcidid><orcidid>https://orcid.org/0000-0001-8614-8281</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2023-10, Vol.124 (19), p.4371-4404
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_journals_2860222925
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Artificial intelligence
artificial neural network
Artificial neural networks
back‐propagation learning algorithm
Differential equations
Fractals
Fractional calculus
generalized Caputo fractal‐fractional derivative
higher order fractal‐fractional differential equations
Iterative methods
Neural networks
Power series
Series expansion
title A highly accurate artificial neural networks scheme for solving higher multi‐order fractal‐fractional differential equations based on generalized Caputo derivative
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A30%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20highly%20accurate%20artificial%20neural%20networks%20scheme%20for%C2%A0solving%20higher%20multi%E2%80%90order%20fractal%E2%80%90fractional%20differential%20equations%20based%20on%20generalized%20Caputo%20derivative&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Shloof,%20A.%20M.&rft.date=2023-10-15&rft.volume=124&rft.issue=19&rft.spage=4371&rft.epage=4404&rft.pages=4371-4404&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.7312&rft_dat=%3Cproquest_cross%3E2860222925%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2860222925&rft_id=info:pmid/&rfr_iscdi=true