Neural network‐based optical flow versus traditional optical flow techniques with thermal aerial imaging in real‐world settings
The study explores the feasibility of optical flow‐based neural network from real‐world thermal aerial imagery. While traditional optical flow techniques have shown adequate performance, sparse techniques do not work well during cold‐soaked low‐contrast conditions, and dense algorithms are more accu...
Gespeichert in:
Veröffentlicht in: | Journal of field robotics 2023-10, Vol.40 (7), p.1817-1839, Article 1817 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1839 |
---|---|
container_issue | 7 |
container_start_page | 1817 |
container_title | Journal of field robotics |
container_volume | 40 |
creator | Nguyen, Tran Xuan Bach Rosser, Kent Perera, Asanka Moss, Philip Chahl, Javaan |
description | The study explores the feasibility of optical flow‐based neural network from real‐world thermal aerial imagery. While traditional optical flow techniques have shown adequate performance, sparse techniques do not work well during cold‐soaked low‐contrast conditions, and dense algorithms are more accurate in low‐contrast conditions but suffer from the aperture problem in some scenes. On the other hand, optical flow from convolutional neural networks has demonstrated good performance with strong generalization from several synthetic public data set benchmarks. Ground truth was generated from real‐world thermal data estimated with traditional dense optical flow techniques. The state‐of‐the‐art Recurrent All‐Pairs Field Transform for the Optical Flow model was trained with both color synthetic data and the captured real‐world thermal data across various thermal contrast conditions. The results showed strong performance of the deep‐learning network against established sparse and dense optical flow techniques in various environments and weather conditions, at the cost of higher computational demand. |
doi_str_mv | 10.1002/rob.22219 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2859804877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2859804877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3329-b25d724b60b9e19affd97d2dff1b89ef9bb9e6b75b036526b4b3eefbed4ff29f3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsL3yDgykXbTOaapRZvUCyIrkMyc9KmTic1yTh0J_gCPqNPYmpFUNDVOfznP7cPoeOIDCNC6MgaOaSURmwH9aI0zQYJy_Ld7zxl--jAuQUhSVywtIdeb6G1osYN-M7Yx_eXNykcVNisvC6DrmrT4WewrnXYW1Fpr00T9B91D-W80U8tONxpP8d-DnYZigKsDkEvxUw3M6wbbEHUYUdYVVfYgfdBd4doT4nawdFX7KOHy4v78fVgMr26GZ9NBmUcUzaQNK1ymsiMSAYRE0pVLK9opVQkCwaKyaBnMk8libOUZjKRMYCSUCVKUabiPjrZzl1ZsznW84VpbfjGcVqkrCBJkefBdbp1ldY4Z0HxlQ0f2DWPCN8w5oEx_2QcvKNf3lJ7sUEUWOn6v45O17D-ezS_m55vOz4AqlOUeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859804877</pqid></control><display><type>article</type><title>Neural network‐based optical flow versus traditional optical flow techniques with thermal aerial imaging in real‐world settings</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nguyen, Tran Xuan Bach ; Rosser, Kent ; Perera, Asanka ; Moss, Philip ; Chahl, Javaan</creator><creatorcontrib>Nguyen, Tran Xuan Bach ; Rosser, Kent ; Perera, Asanka ; Moss, Philip ; Chahl, Javaan</creatorcontrib><description>The study explores the feasibility of optical flow‐based neural network from real‐world thermal aerial imagery. While traditional optical flow techniques have shown adequate performance, sparse techniques do not work well during cold‐soaked low‐contrast conditions, and dense algorithms are more accurate in low‐contrast conditions but suffer from the aperture problem in some scenes. On the other hand, optical flow from convolutional neural networks has demonstrated good performance with strong generalization from several synthetic public data set benchmarks. Ground truth was generated from real‐world thermal data estimated with traditional dense optical flow techniques. The state‐of‐the‐art Recurrent All‐Pairs Field Transform for the Optical Flow model was trained with both color synthetic data and the captured real‐world thermal data across various thermal contrast conditions. The results showed strong performance of the deep‐learning network against established sparse and dense optical flow techniques in various environments and weather conditions, at the cost of higher computational demand.</description><identifier>ISSN: 1556-4959</identifier><identifier>ISSN: 1556-4967</identifier><identifier>EISSN: 1556-4967</identifier><identifier>DOI: 10.1002/rob.22219</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Artificial neural networks ; deep learning ; Feasibility studies ; Ground truth ; LWIR ; navigation ; optical flow ; Optical flow (image analysis) ; Synthetic data ; Thermal imaging ; UAVs ; Weather</subject><ispartof>Journal of field robotics, 2023-10, Vol.40 (7), p.1817-1839, Article 1817</ispartof><rights>2023 The Authors. published by Wiley Periodicals LLC.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3329-b25d724b60b9e19affd97d2dff1b89ef9bb9e6b75b036526b4b3eefbed4ff29f3</citedby><cites>FETCH-LOGICAL-c3329-b25d724b60b9e19affd97d2dff1b89ef9bb9e6b75b036526b4b3eefbed4ff29f3</cites><orcidid>0000-0002-9914-2265 ; 0000-0003-4017-6396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frob.22219$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frob.22219$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Nguyen, Tran Xuan Bach</creatorcontrib><creatorcontrib>Rosser, Kent</creatorcontrib><creatorcontrib>Perera, Asanka</creatorcontrib><creatorcontrib>Moss, Philip</creatorcontrib><creatorcontrib>Chahl, Javaan</creatorcontrib><title>Neural network‐based optical flow versus traditional optical flow techniques with thermal aerial imaging in real‐world settings</title><title>Journal of field robotics</title><description>The study explores the feasibility of optical flow‐based neural network from real‐world thermal aerial imagery. While traditional optical flow techniques have shown adequate performance, sparse techniques do not work well during cold‐soaked low‐contrast conditions, and dense algorithms are more accurate in low‐contrast conditions but suffer from the aperture problem in some scenes. On the other hand, optical flow from convolutional neural networks has demonstrated good performance with strong generalization from several synthetic public data set benchmarks. Ground truth was generated from real‐world thermal data estimated with traditional dense optical flow techniques. The state‐of‐the‐art Recurrent All‐Pairs Field Transform for the Optical Flow model was trained with both color synthetic data and the captured real‐world thermal data across various thermal contrast conditions. The results showed strong performance of the deep‐learning network against established sparse and dense optical flow techniques in various environments and weather conditions, at the cost of higher computational demand.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>deep learning</subject><subject>Feasibility studies</subject><subject>Ground truth</subject><subject>LWIR</subject><subject>navigation</subject><subject>optical flow</subject><subject>Optical flow (image analysis)</subject><subject>Synthetic data</subject><subject>Thermal imaging</subject><subject>UAVs</subject><subject>Weather</subject><issn>1556-4959</issn><issn>1556-4967</issn><issn>1556-4967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kMtKAzEUhoMoWKsL3yDgykXbTOaapRZvUCyIrkMyc9KmTic1yTh0J_gCPqNPYmpFUNDVOfznP7cPoeOIDCNC6MgaOaSURmwH9aI0zQYJy_Ld7zxl--jAuQUhSVywtIdeb6G1osYN-M7Yx_eXNykcVNisvC6DrmrT4WewrnXYW1Fpr00T9B91D-W80U8tONxpP8d-DnYZigKsDkEvxUw3M6wbbEHUYUdYVVfYgfdBd4doT4nawdFX7KOHy4v78fVgMr26GZ9NBmUcUzaQNK1ymsiMSAYRE0pVLK9opVQkCwaKyaBnMk8libOUZjKRMYCSUCVKUabiPjrZzl1ZsznW84VpbfjGcVqkrCBJkefBdbp1ldY4Z0HxlQ0f2DWPCN8w5oEx_2QcvKNf3lJ7sUEUWOn6v45O17D-ezS_m55vOz4AqlOUeQ</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Nguyen, Tran Xuan Bach</creator><creator>Rosser, Kent</creator><creator>Perera, Asanka</creator><creator>Moss, Philip</creator><creator>Chahl, Javaan</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9914-2265</orcidid><orcidid>https://orcid.org/0000-0003-4017-6396</orcidid></search><sort><creationdate>202310</creationdate><title>Neural network‐based optical flow versus traditional optical flow techniques with thermal aerial imaging in real‐world settings</title><author>Nguyen, Tran Xuan Bach ; Rosser, Kent ; Perera, Asanka ; Moss, Philip ; Chahl, Javaan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3329-b25d724b60b9e19affd97d2dff1b89ef9bb9e6b75b036526b4b3eefbed4ff29f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>deep learning</topic><topic>Feasibility studies</topic><topic>Ground truth</topic><topic>LWIR</topic><topic>navigation</topic><topic>optical flow</topic><topic>Optical flow (image analysis)</topic><topic>Synthetic data</topic><topic>Thermal imaging</topic><topic>UAVs</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Tran Xuan Bach</creatorcontrib><creatorcontrib>Rosser, Kent</creatorcontrib><creatorcontrib>Perera, Asanka</creatorcontrib><creatorcontrib>Moss, Philip</creatorcontrib><creatorcontrib>Chahl, Javaan</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of field robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Tran Xuan Bach</au><au>Rosser, Kent</au><au>Perera, Asanka</au><au>Moss, Philip</au><au>Chahl, Javaan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural network‐based optical flow versus traditional optical flow techniques with thermal aerial imaging in real‐world settings</atitle><jtitle>Journal of field robotics</jtitle><date>2023-10</date><risdate>2023</risdate><volume>40</volume><issue>7</issue><spage>1817</spage><epage>1839</epage><pages>1817-1839</pages><artnum>1817</artnum><issn>1556-4959</issn><issn>1556-4967</issn><eissn>1556-4967</eissn><abstract>The study explores the feasibility of optical flow‐based neural network from real‐world thermal aerial imagery. While traditional optical flow techniques have shown adequate performance, sparse techniques do not work well during cold‐soaked low‐contrast conditions, and dense algorithms are more accurate in low‐contrast conditions but suffer from the aperture problem in some scenes. On the other hand, optical flow from convolutional neural networks has demonstrated good performance with strong generalization from several synthetic public data set benchmarks. Ground truth was generated from real‐world thermal data estimated with traditional dense optical flow techniques. The state‐of‐the‐art Recurrent All‐Pairs Field Transform for the Optical Flow model was trained with both color synthetic data and the captured real‐world thermal data across various thermal contrast conditions. The results showed strong performance of the deep‐learning network against established sparse and dense optical flow techniques in various environments and weather conditions, at the cost of higher computational demand.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rob.22219</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-9914-2265</orcidid><orcidid>https://orcid.org/0000-0003-4017-6396</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1556-4959 |
ispartof | Journal of field robotics, 2023-10, Vol.40 (7), p.1817-1839, Article 1817 |
issn | 1556-4959 1556-4967 1556-4967 |
language | eng |
recordid | cdi_proquest_journals_2859804877 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Artificial neural networks deep learning Feasibility studies Ground truth LWIR navigation optical flow Optical flow (image analysis) Synthetic data Thermal imaging UAVs Weather |
title | Neural network‐based optical flow versus traditional optical flow techniques with thermal aerial imaging in real‐world settings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T08%3A53%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20network%E2%80%90based%20optical%20flow%20versus%20traditional%20optical%20flow%20techniques%20with%20thermal%20aerial%20imaging%20in%20real%E2%80%90world%20settings&rft.jtitle=Journal%20of%20field%20robotics&rft.au=Nguyen,%20Tran%20Xuan%20Bach&rft.date=2023-10&rft.volume=40&rft.issue=7&rft.spage=1817&rft.epage=1839&rft.pages=1817-1839&rft.artnum=1817&rft.issn=1556-4959&rft.eissn=1556-4967&rft_id=info:doi/10.1002/rob.22219&rft_dat=%3Cproquest_cross%3E2859804877%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859804877&rft_id=info:pmid/&rfr_iscdi=true |