Enhanced Magnetotransport Properties of Ag-doped La0.7Ca0.3-xAgxMnO3 Polycrystalline Ceramics

The present report focuses on the successful synthesis of La 0.7 Ca 0.3− x Ag x MnO 3 ( x  = 0, 0.10, 0.15, 0.20, and 0.30) polycrystalline manganite samples through a soft chemical polymeric precursor route and subsequent impact of Ag doping and grain size on their magnetotransport features. X-ray...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2023-10, Vol.52 (10), p.6425-6435
Hauptverfasser: Srivastava, Pankaj, Singh, Ashwani Kumar, Tyagi, Udai Prakash, Singh, Jai, Srivastava, Amit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6435
container_issue 10
container_start_page 6425
container_title Journal of electronic materials
container_volume 52
creator Srivastava, Pankaj
Singh, Ashwani Kumar
Tyagi, Udai Prakash
Singh, Jai
Srivastava, Amit
description The present report focuses on the successful synthesis of La 0.7 Ca 0.3− x Ag x MnO 3 ( x  = 0, 0.10, 0.15, 0.20, and 0.30) polycrystalline manganite samples through a soft chemical polymeric precursor route and subsequent impact of Ag doping and grain size on their magnetotransport features. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses reveal that Ag doping leads to a phase transformation from the orthorhombic phase to the rhombohedral phase (for x  ≥ 15%). Furthermore, it shows that the insulator–metal transition temperature (T IM ) and paramagnetic–ferromagnetic (PM-FM) transition temperature ( T C ) increase with Ag doping concentration and also with the sintering temperature. The prime factors leading to the enhancement with Ag doping are the well-known oxygenation effect by metallic Ag, which helps to improve the transport properties of La 1− x Ca x MnO 3 (LCMO) manganite, and the increase in the tolerance factor ( τ ), which in turn leads to the Mn-O-Mn bond angle and the structural disorder near the grain boundaries that weaken the double exchange. The room temperature magnetoresistance values are found to be higher for Ag-doped LCMO samples than for the pristine LCMO. The enhanced ferromagnetic ordering temperature along with low-field magnetoresistance (LFMR) of the as-synthesized Ag-doped LCMO polycrystalline ceramic indicate its potential for device fabrication.
doi_str_mv 10.1007/s11664-023-10595-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2859761700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2859761700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-76cfb943cc2b833d5506b56373c1df59fddafd42fbfce619f2cad5b18d1d9df93</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA69Q8JpmZZSn1AS3tQsGNhEwe45RpMiZTaP-90RHcubmHA-ecCx8AtxjNMELFfcSY8xwiQiFGrGIwPwMTzPJkS_52DiaIcgwZoewSXMW4QwgzXOIJeF-6D-mU0dlaNs4MfgjSxd6HIdsG35swtCZm3mbzBurkdbaSaFYs0qHwOG-Oa7eh2dZ3JxVOcZBd1zqTLUyQ-1bFa3BhZRfNza9OwevD8mXxBFebx-fFfAUVQWiABVe2rnKqFKlLSjVjiNeM04IqrC2rrNbS6pzY2irDcWWJkprVuNRYV9pWdAruxt0--M-DiYPY-UNw6aUgJasKjguEUoqMKRV8jMFY0Yd2L8NJYCS-MYoRo0gYxQ9GkacSHUsxhV1jwt_0P60vqLR18w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859761700</pqid></control><display><type>article</type><title>Enhanced Magnetotransport Properties of Ag-doped La0.7Ca0.3-xAgxMnO3 Polycrystalline Ceramics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Srivastava, Pankaj ; Singh, Ashwani Kumar ; Tyagi, Udai Prakash ; Singh, Jai ; Srivastava, Amit</creator><creatorcontrib>Srivastava, Pankaj ; Singh, Ashwani Kumar ; Tyagi, Udai Prakash ; Singh, Jai ; Srivastava, Amit</creatorcontrib><description>The present report focuses on the successful synthesis of La 0.7 Ca 0.3− x Ag x MnO 3 ( x  = 0, 0.10, 0.15, 0.20, and 0.30) polycrystalline manganite samples through a soft chemical polymeric precursor route and subsequent impact of Ag doping and grain size on their magnetotransport features. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses reveal that Ag doping leads to a phase transformation from the orthorhombic phase to the rhombohedral phase (for x  ≥ 15%). Furthermore, it shows that the insulator–metal transition temperature (T IM ) and paramagnetic–ferromagnetic (PM-FM) transition temperature ( T C ) increase with Ag doping concentration and also with the sintering temperature. The prime factors leading to the enhancement with Ag doping are the well-known oxygenation effect by metallic Ag, which helps to improve the transport properties of La 1− x Ca x MnO 3 (LCMO) manganite, and the increase in the tolerance factor ( τ ), which in turn leads to the Mn-O-Mn bond angle and the structural disorder near the grain boundaries that weaken the double exchange. The room temperature magnetoresistance values are found to be higher for Ag-doped LCMO samples than for the pristine LCMO. The enhanced ferromagnetic ordering temperature along with low-field magnetoresistance (LFMR) of the as-synthesized Ag-doped LCMO polycrystalline ceramic indicate its potential for device fabrication.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-023-10595-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Doping ; Electronics and Microelectronics ; Electrons ; Ferromagnetism ; Grain boundaries ; Grain size ; Instrumentation ; Magnetic properties ; Magnetoresistance ; Magnetoresistivity ; Manganites ; Materials Science ; Optical and Electronic Materials ; Original Research Article ; Orthorhombic phase ; Oxygenation ; Phase transitions ; Polycrystals ; Prepolymers ; Room temperature ; Silver ; Solid State Physics ; Transition temperature ; Transport properties</subject><ispartof>Journal of electronic materials, 2023-10, Vol.52 (10), p.6425-6435</ispartof><rights>The Minerals, Metals &amp; Materials Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-76cfb943cc2b833d5506b56373c1df59fddafd42fbfce619f2cad5b18d1d9df93</cites><orcidid>0000-0001-7413-7032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-023-10595-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-023-10595-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Srivastava, Pankaj</creatorcontrib><creatorcontrib>Singh, Ashwani Kumar</creatorcontrib><creatorcontrib>Tyagi, Udai Prakash</creatorcontrib><creatorcontrib>Singh, Jai</creatorcontrib><creatorcontrib>Srivastava, Amit</creatorcontrib><title>Enhanced Magnetotransport Properties of Ag-doped La0.7Ca0.3-xAgxMnO3 Polycrystalline Ceramics</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>The present report focuses on the successful synthesis of La 0.7 Ca 0.3− x Ag x MnO 3 ( x  = 0, 0.10, 0.15, 0.20, and 0.30) polycrystalline manganite samples through a soft chemical polymeric precursor route and subsequent impact of Ag doping and grain size on their magnetotransport features. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses reveal that Ag doping leads to a phase transformation from the orthorhombic phase to the rhombohedral phase (for x  ≥ 15%). Furthermore, it shows that the insulator–metal transition temperature (T IM ) and paramagnetic–ferromagnetic (PM-FM) transition temperature ( T C ) increase with Ag doping concentration and also with the sintering temperature. The prime factors leading to the enhancement with Ag doping are the well-known oxygenation effect by metallic Ag, which helps to improve the transport properties of La 1− x Ca x MnO 3 (LCMO) manganite, and the increase in the tolerance factor ( τ ), which in turn leads to the Mn-O-Mn bond angle and the structural disorder near the grain boundaries that weaken the double exchange. The room temperature magnetoresistance values are found to be higher for Ag-doped LCMO samples than for the pristine LCMO. The enhanced ferromagnetic ordering temperature along with low-field magnetoresistance (LFMR) of the as-synthesized Ag-doped LCMO polycrystalline ceramic indicate its potential for device fabrication.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Doping</subject><subject>Electronics and Microelectronics</subject><subject>Electrons</subject><subject>Ferromagnetism</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Instrumentation</subject><subject>Magnetic properties</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Manganites</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Orthorhombic phase</subject><subject>Oxygenation</subject><subject>Phase transitions</subject><subject>Polycrystals</subject><subject>Prepolymers</subject><subject>Room temperature</subject><subject>Silver</subject><subject>Solid State Physics</subject><subject>Transition temperature</subject><subject>Transport properties</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wNWA69Q8JpmZZSn1AS3tQsGNhEwe45RpMiZTaP-90RHcubmHA-ecCx8AtxjNMELFfcSY8xwiQiFGrGIwPwMTzPJkS_52DiaIcgwZoewSXMW4QwgzXOIJeF-6D-mU0dlaNs4MfgjSxd6HIdsG35swtCZm3mbzBurkdbaSaFYs0qHwOG-Oa7eh2dZ3JxVOcZBd1zqTLUyQ-1bFa3BhZRfNza9OwevD8mXxBFebx-fFfAUVQWiABVe2rnKqFKlLSjVjiNeM04IqrC2rrNbS6pzY2irDcWWJkprVuNRYV9pWdAruxt0--M-DiYPY-UNw6aUgJasKjguEUoqMKRV8jMFY0Yd2L8NJYCS-MYoRo0gYxQ9GkacSHUsxhV1jwt_0P60vqLR18w</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Srivastava, Pankaj</creator><creator>Singh, Ashwani Kumar</creator><creator>Tyagi, Udai Prakash</creator><creator>Singh, Jai</creator><creator>Srivastava, Amit</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0001-7413-7032</orcidid></search><sort><creationdate>20231001</creationdate><title>Enhanced Magnetotransport Properties of Ag-doped La0.7Ca0.3-xAgxMnO3 Polycrystalline Ceramics</title><author>Srivastava, Pankaj ; Singh, Ashwani Kumar ; Tyagi, Udai Prakash ; Singh, Jai ; Srivastava, Amit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-76cfb943cc2b833d5506b56373c1df59fddafd42fbfce619f2cad5b18d1d9df93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Doping</topic><topic>Electronics and Microelectronics</topic><topic>Electrons</topic><topic>Ferromagnetism</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Instrumentation</topic><topic>Magnetic properties</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Manganites</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Orthorhombic phase</topic><topic>Oxygenation</topic><topic>Phase transitions</topic><topic>Polycrystals</topic><topic>Prepolymers</topic><topic>Room temperature</topic><topic>Silver</topic><topic>Solid State Physics</topic><topic>Transition temperature</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srivastava, Pankaj</creatorcontrib><creatorcontrib>Singh, Ashwani Kumar</creatorcontrib><creatorcontrib>Tyagi, Udai Prakash</creatorcontrib><creatorcontrib>Singh, Jai</creatorcontrib><creatorcontrib>Srivastava, Amit</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srivastava, Pankaj</au><au>Singh, Ashwani Kumar</au><au>Tyagi, Udai Prakash</au><au>Singh, Jai</au><au>Srivastava, Amit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Magnetotransport Properties of Ag-doped La0.7Ca0.3-xAgxMnO3 Polycrystalline Ceramics</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>52</volume><issue>10</issue><spage>6425</spage><epage>6435</epage><pages>6425-6435</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>The present report focuses on the successful synthesis of La 0.7 Ca 0.3− x Ag x MnO 3 ( x  = 0, 0.10, 0.15, 0.20, and 0.30) polycrystalline manganite samples through a soft chemical polymeric precursor route and subsequent impact of Ag doping and grain size on their magnetotransport features. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses reveal that Ag doping leads to a phase transformation from the orthorhombic phase to the rhombohedral phase (for x  ≥ 15%). Furthermore, it shows that the insulator–metal transition temperature (T IM ) and paramagnetic–ferromagnetic (PM-FM) transition temperature ( T C ) increase with Ag doping concentration and also with the sintering temperature. The prime factors leading to the enhancement with Ag doping are the well-known oxygenation effect by metallic Ag, which helps to improve the transport properties of La 1− x Ca x MnO 3 (LCMO) manganite, and the increase in the tolerance factor ( τ ), which in turn leads to the Mn-O-Mn bond angle and the structural disorder near the grain boundaries that weaken the double exchange. The room temperature magnetoresistance values are found to be higher for Ag-doped LCMO samples than for the pristine LCMO. The enhanced ferromagnetic ordering temperature along with low-field magnetoresistance (LFMR) of the as-synthesized Ag-doped LCMO polycrystalline ceramic indicate its potential for device fabrication.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-023-10595-4</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7413-7032</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2023-10, Vol.52 (10), p.6425-6435
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2859761700
source SpringerLink Journals - AutoHoldings
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Doping
Electronics and Microelectronics
Electrons
Ferromagnetism
Grain boundaries
Grain size
Instrumentation
Magnetic properties
Magnetoresistance
Magnetoresistivity
Manganites
Materials Science
Optical and Electronic Materials
Original Research Article
Orthorhombic phase
Oxygenation
Phase transitions
Polycrystals
Prepolymers
Room temperature
Silver
Solid State Physics
Transition temperature
Transport properties
title Enhanced Magnetotransport Properties of Ag-doped La0.7Ca0.3-xAgxMnO3 Polycrystalline Ceramics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A11%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Magnetotransport%20Properties%20of%20Ag-doped%20La0.7Ca0.3-xAgxMnO3%20Polycrystalline%20Ceramics&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Srivastava,%20Pankaj&rft.date=2023-10-01&rft.volume=52&rft.issue=10&rft.spage=6425&rft.epage=6435&rft.pages=6425-6435&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-023-10595-4&rft_dat=%3Cproquest_cross%3E2859761700%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859761700&rft_id=info:pmid/&rfr_iscdi=true