Dropout Ensemble Kalman inversion for high dimensional inverse problems
Ensemble Kalman inversion (EKI) is an ensemble-based method to solve inverse problems. Its gradient-free formulation makes it an attractive tool for problems with involved formulation. However, EKI suffers from the ''subspace property'', i.e., the EKI solutions are confined in th...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-08 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Liu, Shuigen Reich, Sebastian Tong, Xin T |
description | Ensemble Kalman inversion (EKI) is an ensemble-based method to solve inverse problems. Its gradient-free formulation makes it an attractive tool for problems with involved formulation. However, EKI suffers from the ''subspace property'', i.e., the EKI solutions are confined in the subspace spanned by the initial ensemble. It implies that the ensemble size should be larger than the problem dimension to ensure EKI's convergence to the correct solution. Such scaling of ensemble size is impractical and prevents the use of EKI in high dimensional problems. To address this issue, we propose a novel approach using dropout regularization to mitigate the subspace problem. We prove that dropout-EKI converges in the small ensemble settings, and the computational cost of the algorithm scales linearly with dimension. We also show that dropout-EKI reaches the optimal query complexity, up to a constant factor. Numerical examples demonstrate the effectiveness of our approach. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2859741784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2859741784</sourcerecordid><originalsourceid>FETCH-proquest_journals_28597417843</originalsourceid><addsrcrecordid>eNqNi80KgkAURocgSMp3uNBa0JkxbV1W0La9jHTNkfmxudrzZ-ADtPrgfOesWMSFyJJScr5hMVGfpik_FDzPRcSu5-AHP41QOULbGIS7MlY50O6DgbR30PoAnX518NQW3Q8ps9wIQ_BzZGnH1q0yhPGyW7a_VI_TLZmF94Q01r2fwlxSzcv8WMisKKX4z_oCR408XQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859741784</pqid></control><display><type>article</type><title>Dropout Ensemble Kalman inversion for high dimensional inverse problems</title><source>Freely Accessible Journals</source><creator>Liu, Shuigen ; Reich, Sebastian ; Tong, Xin T</creator><creatorcontrib>Liu, Shuigen ; Reich, Sebastian ; Tong, Xin T</creatorcontrib><description>Ensemble Kalman inversion (EKI) is an ensemble-based method to solve inverse problems. Its gradient-free formulation makes it an attractive tool for problems with involved formulation. However, EKI suffers from the ''subspace property'', i.e., the EKI solutions are confined in the subspace spanned by the initial ensemble. It implies that the ensemble size should be larger than the problem dimension to ensure EKI's convergence to the correct solution. Such scaling of ensemble size is impractical and prevents the use of EKI in high dimensional problems. To address this issue, we propose a novel approach using dropout regularization to mitigate the subspace problem. We prove that dropout-EKI converges in the small ensemble settings, and the computational cost of the algorithm scales linearly with dimension. We also show that dropout-EKI reaches the optimal query complexity, up to a constant factor. Numerical examples demonstrate the effectiveness of our approach.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Convergence ; Inverse problems ; Regularization ; Subspaces</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Liu, Shuigen</creatorcontrib><creatorcontrib>Reich, Sebastian</creatorcontrib><creatorcontrib>Tong, Xin T</creatorcontrib><title>Dropout Ensemble Kalman inversion for high dimensional inverse problems</title><title>arXiv.org</title><description>Ensemble Kalman inversion (EKI) is an ensemble-based method to solve inverse problems. Its gradient-free formulation makes it an attractive tool for problems with involved formulation. However, EKI suffers from the ''subspace property'', i.e., the EKI solutions are confined in the subspace spanned by the initial ensemble. It implies that the ensemble size should be larger than the problem dimension to ensure EKI's convergence to the correct solution. Such scaling of ensemble size is impractical and prevents the use of EKI in high dimensional problems. To address this issue, we propose a novel approach using dropout regularization to mitigate the subspace problem. We prove that dropout-EKI converges in the small ensemble settings, and the computational cost of the algorithm scales linearly with dimension. We also show that dropout-EKI reaches the optimal query complexity, up to a constant factor. Numerical examples demonstrate the effectiveness of our approach.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Inverse problems</subject><subject>Regularization</subject><subject>Subspaces</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi80KgkAURocgSMp3uNBa0JkxbV1W0La9jHTNkfmxudrzZ-ADtPrgfOesWMSFyJJScr5hMVGfpik_FDzPRcSu5-AHP41QOULbGIS7MlY50O6DgbR30PoAnX518NQW3Q8ps9wIQ_BzZGnH1q0yhPGyW7a_VI_TLZmF94Q01r2fwlxSzcv8WMisKKX4z_oCR408XQ</recordid><startdate>20230831</startdate><enddate>20230831</enddate><creator>Liu, Shuigen</creator><creator>Reich, Sebastian</creator><creator>Tong, Xin T</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230831</creationdate><title>Dropout Ensemble Kalman inversion for high dimensional inverse problems</title><author>Liu, Shuigen ; Reich, Sebastian ; Tong, Xin T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28597417843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Inverse problems</topic><topic>Regularization</topic><topic>Subspaces</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shuigen</creatorcontrib><creatorcontrib>Reich, Sebastian</creatorcontrib><creatorcontrib>Tong, Xin T</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shuigen</au><au>Reich, Sebastian</au><au>Tong, Xin T</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Dropout Ensemble Kalman inversion for high dimensional inverse problems</atitle><jtitle>arXiv.org</jtitle><date>2023-08-31</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Ensemble Kalman inversion (EKI) is an ensemble-based method to solve inverse problems. Its gradient-free formulation makes it an attractive tool for problems with involved formulation. However, EKI suffers from the ''subspace property'', i.e., the EKI solutions are confined in the subspace spanned by the initial ensemble. It implies that the ensemble size should be larger than the problem dimension to ensure EKI's convergence to the correct solution. Such scaling of ensemble size is impractical and prevents the use of EKI in high dimensional problems. To address this issue, we propose a novel approach using dropout regularization to mitigate the subspace problem. We prove that dropout-EKI converges in the small ensemble settings, and the computational cost of the algorithm scales linearly with dimension. We also show that dropout-EKI reaches the optimal query complexity, up to a constant factor. Numerical examples demonstrate the effectiveness of our approach.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2859741784 |
source | Freely Accessible Journals |
subjects | Algorithms Convergence Inverse problems Regularization Subspaces |
title | Dropout Ensemble Kalman inversion for high dimensional inverse problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A37%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Dropout%20Ensemble%20Kalman%20inversion%20for%20high%20dimensional%20inverse%20problems&rft.jtitle=arXiv.org&rft.au=Liu,%20Shuigen&rft.date=2023-08-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2859741784%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859741784&rft_id=info:pmid/&rfr_iscdi=true |