How network structure affects the dynamics of a network of stochastic spiking neurons

Up to now, it still remains an open question about the relation between the structure of brain networks and their functions. The effects of structure on the dynamics of neural networks are usually investigated via extensive numerical simulations, while analytical analysis is always very difficult an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2023-09, Vol.33 (9)
Hauptverfasser: Chen, Lei, Yu, Chaojun, Zhai, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Chaos (Woodbury, N.Y.)
container_volume 33
creator Chen, Lei
Yu, Chaojun
Zhai, Jian
description Up to now, it still remains an open question about the relation between the structure of brain networks and their functions. The effects of structure on the dynamics of neural networks are usually investigated via extensive numerical simulations, while analytical analysis is always very difficult and thus rare. In this work, we explored the effects of a random regular graph on the dynamics of a neural network of stochastic spiking neurons, which has a bistable region when fully connected. We showed by numerical simulations that as the number of each neuron’s neighbors decreases, the bistable region shrinks and eventually seems to disappear, and a critical-like transition appears. In the meantime, we made analytical analysis that explains numerical results. We hope this would give some insights into how structure affects the dynamics of neural networks from a theoretical perspective, rather than merely by numerical simulations.
doi_str_mv 10.1063/5.0164207
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2859723341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2859723341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-183289d8ef858b42a41a4026ebddffb12c98429003b0df93cd048bb6a643c08d3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8KLC1snXNnuUolYoeLHnJZtNbPqxqUmW0n9vSosHD55mhnkYhhehWwIjAiV7EiMgJacwPkMDArIqxqWk54de8IIIgEt0FeMSAAhlYoDmU7_DnUk7H1Y4ptDr1AeDlbVGp4jTwuB236mN0xF7i9WvzUNMXi9UTE7juHUr133lbR98F6_RhVXraG5OdYjmry-fk2kx-3h7nzzPCs2oSAWRjMqqlcZKIRtOFSeKAy1N07bWNoTqSnJaAbAGWlsx3QKXTVOqkjMNsmVDdH-8uw3-uzcx1RsXtVmvVWd8H2sqS-A5Fg6Z3v2hS9-HLn-XlajGlDFOsno4Kh18jMHYehvcRoV9TaA-BFyL-hRwto9HG7VLKjnf_YN_ABYrehM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859723341</pqid></control><display><type>article</type><title>How network structure affects the dynamics of a network of stochastic spiking neurons</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Chen, Lei ; Yu, Chaojun ; Zhai, Jian</creator><creatorcontrib>Chen, Lei ; Yu, Chaojun ; Zhai, Jian</creatorcontrib><description>Up to now, it still remains an open question about the relation between the structure of brain networks and their functions. The effects of structure on the dynamics of neural networks are usually investigated via extensive numerical simulations, while analytical analysis is always very difficult and thus rare. In this work, we explored the effects of a random regular graph on the dynamics of a neural network of stochastic spiking neurons, which has a bistable region when fully connected. We showed by numerical simulations that as the number of each neuron’s neighbors decreases, the bistable region shrinks and eventually seems to disappear, and a critical-like transition appears. In the meantime, we made analytical analysis that explains numerical results. We hope this would give some insights into how structure affects the dynamics of neural networks from a theoretical perspective, rather than merely by numerical simulations.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/5.0164207</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computer simulation ; Dynamic structural analysis ; Dynamics ; Neural networks ; Neurons ; Spiking</subject><ispartof>Chaos (Woodbury, N.Y.), 2023-09, Vol.33 (9)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-183289d8ef858b42a41a4026ebddffb12c98429003b0df93cd048bb6a643c08d3</citedby><cites>FETCH-LOGICAL-c325t-183289d8ef858b42a41a4026ebddffb12c98429003b0df93cd048bb6a643c08d3</cites><orcidid>0000-0002-6109-9206 ; 0000-0002-7136-4894 ; 0000-0002-0372-0770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Yu, Chaojun</creatorcontrib><creatorcontrib>Zhai, Jian</creatorcontrib><title>How network structure affects the dynamics of a network of stochastic spiking neurons</title><title>Chaos (Woodbury, N.Y.)</title><description>Up to now, it still remains an open question about the relation between the structure of brain networks and their functions. The effects of structure on the dynamics of neural networks are usually investigated via extensive numerical simulations, while analytical analysis is always very difficult and thus rare. In this work, we explored the effects of a random regular graph on the dynamics of a neural network of stochastic spiking neurons, which has a bistable region when fully connected. We showed by numerical simulations that as the number of each neuron’s neighbors decreases, the bistable region shrinks and eventually seems to disappear, and a critical-like transition appears. In the meantime, we made analytical analysis that explains numerical results. We hope this would give some insights into how structure affects the dynamics of neural networks from a theoretical perspective, rather than merely by numerical simulations.</description><subject>Computer simulation</subject><subject>Dynamic structural analysis</subject><subject>Dynamics</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Spiking</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8KLC1snXNnuUolYoeLHnJZtNbPqxqUmW0n9vSosHD55mhnkYhhehWwIjAiV7EiMgJacwPkMDArIqxqWk54de8IIIgEt0FeMSAAhlYoDmU7_DnUk7H1Y4ptDr1AeDlbVGp4jTwuB236mN0xF7i9WvzUNMXi9UTE7juHUr133lbR98F6_RhVXraG5OdYjmry-fk2kx-3h7nzzPCs2oSAWRjMqqlcZKIRtOFSeKAy1N07bWNoTqSnJaAbAGWlsx3QKXTVOqkjMNsmVDdH-8uw3-uzcx1RsXtVmvVWd8H2sqS-A5Fg6Z3v2hS9-HLn-XlajGlDFOsno4Kh18jMHYehvcRoV9TaA-BFyL-hRwto9HG7VLKjnf_YN_ABYrehM</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Chen, Lei</creator><creator>Yu, Chaojun</creator><creator>Zhai, Jian</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6109-9206</orcidid><orcidid>https://orcid.org/0000-0002-7136-4894</orcidid><orcidid>https://orcid.org/0000-0002-0372-0770</orcidid></search><sort><creationdate>202309</creationdate><title>How network structure affects the dynamics of a network of stochastic spiking neurons</title><author>Chen, Lei ; Yu, Chaojun ; Zhai, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-183289d8ef858b42a41a4026ebddffb12c98429003b0df93cd048bb6a643c08d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer simulation</topic><topic>Dynamic structural analysis</topic><topic>Dynamics</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Spiking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Yu, Chaojun</creatorcontrib><creatorcontrib>Zhai, Jian</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lei</au><au>Yu, Chaojun</au><au>Zhai, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How network structure affects the dynamics of a network of stochastic spiking neurons</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><date>2023-09</date><risdate>2023</risdate><volume>33</volume><issue>9</issue><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>Up to now, it still remains an open question about the relation between the structure of brain networks and their functions. The effects of structure on the dynamics of neural networks are usually investigated via extensive numerical simulations, while analytical analysis is always very difficult and thus rare. In this work, we explored the effects of a random regular graph on the dynamics of a neural network of stochastic spiking neurons, which has a bistable region when fully connected. We showed by numerical simulations that as the number of each neuron’s neighbors decreases, the bistable region shrinks and eventually seems to disappear, and a critical-like transition appears. In the meantime, we made analytical analysis that explains numerical results. We hope this would give some insights into how structure affects the dynamics of neural networks from a theoretical perspective, rather than merely by numerical simulations.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0164207</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6109-9206</orcidid><orcidid>https://orcid.org/0000-0002-7136-4894</orcidid><orcidid>https://orcid.org/0000-0002-0372-0770</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2023-09, Vol.33 (9)
issn 1054-1500
1089-7682
language eng
recordid cdi_proquest_journals_2859723341
source AIP Journals Complete; Alma/SFX Local Collection
subjects Computer simulation
Dynamic structural analysis
Dynamics
Neural networks
Neurons
Spiking
title How network structure affects the dynamics of a network of stochastic spiking neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A25%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20network%20structure%20affects%20the%20dynamics%20of%20a%20network%20of%20stochastic%20spiking%20neurons&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Chen,%20Lei&rft.date=2023-09&rft.volume=33&rft.issue=9&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/5.0164207&rft_dat=%3Cproquest_cross%3E2859723341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859723341&rft_id=info:pmid/&rfr_iscdi=true