Neural network predicts ion concentration profiles under nanoconfinement

Modeling the ion concentration profile in nanochannel plays an important role in understanding the electrical double layer and electro-osmotic flow. Due to the non-negligible surface interaction and the effect of discrete solvent molecules, molecular dynamics (MD) simulation is often used as an esse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2023-09, Vol.159 (9)
Hauptverfasser: Cao, Zhonglin, Wang, Yuyang, Lorsung, Cooper, Barati Farimani, Amir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title The Journal of chemical physics
container_volume 159
creator Cao, Zhonglin
Wang, Yuyang
Lorsung, Cooper
Barati Farimani, Amir
description Modeling the ion concentration profile in nanochannel plays an important role in understanding the electrical double layer and electro-osmotic flow. Due to the non-negligible surface interaction and the effect of discrete solvent molecules, molecular dynamics (MD) simulation is often used as an essential tool to study the behavior of ions under nanoconfinement. Despite the accuracy of MD simulation in modeling nanoconfinement systems, it is computationally expensive. In this work, we propose neural network to predict ion concentration profiles in nanochannels with different configurations, including channel widths, ion molarity, and ion types. By modeling the ion concentration profile as a probability distribution, our neural network can serve as a much faster surrogate model for MD simulation with high accuracy. We further demonstrate the superior prediction accuracy of neural network over XGBoost. Finally, we demonstrated that neural network is flexible in predicting ion concentration profiles with different bin sizes. Overall, our deep learning model is a fast, flexible, and accurate surrogate model to predict ion concentration profiles in nanoconfinement.
doi_str_mv 10.1063/5.0147119
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2859722394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2859722394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-2f54b1070b0293542c7958b371ab61f1c1043b619532643628fa812ccce0066f3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX-w4EWFrTP52s1Rilqh6EXPSzZNYOs2qcku4r83tT158DQz8DC8vIRcIswQJLsTM0BeIaojMkGoVVlJBcdkAkCxVBLkKTlLaQ0AWFE-IYsXO0bdF94OXyF-FNtoV50ZUtEFX5jgjfVD1MPu2sbgut6mYvQrGwuvfcjAdd5uMjonJ073yV4c5pS8Pz68zRfl8vXpeX6_LA2jYiipE7xFqKAFqpjg1FRK1C2rULcSHRoEzvKmBKOSM0lrp2ukxhgLIKVjU3K9_5vjfI42Dc2mS8b2vfY2jKmhtQQOgkqR6dUfug5j9DldVkJVlDLFs7rZKxNDStG6Zhu7jY7fDUKz67QRzaHTbG_3Nplu-G3lH_wDhZx0ig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859722394</pqid></control><display><type>article</type><title>Neural network predicts ion concentration profiles under nanoconfinement</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Cao, Zhonglin ; Wang, Yuyang ; Lorsung, Cooper ; Barati Farimani, Amir</creator><creatorcontrib>Cao, Zhonglin ; Wang, Yuyang ; Lorsung, Cooper ; Barati Farimani, Amir</creatorcontrib><description>Modeling the ion concentration profile in nanochannel plays an important role in understanding the electrical double layer and electro-osmotic flow. Due to the non-negligible surface interaction and the effect of discrete solvent molecules, molecular dynamics (MD) simulation is often used as an essential tool to study the behavior of ions under nanoconfinement. Despite the accuracy of MD simulation in modeling nanoconfinement systems, it is computationally expensive. In this work, we propose neural network to predict ion concentration profiles in nanochannels with different configurations, including channel widths, ion molarity, and ion types. By modeling the ion concentration profile as a probability distribution, our neural network can serve as a much faster surrogate model for MD simulation with high accuracy. We further demonstrate the superior prediction accuracy of neural network over XGBoost. Finally, we demonstrated that neural network is flexible in predicting ion concentration profiles with different bin sizes. Overall, our deep learning model is a fast, flexible, and accurate surrogate model to predict ion concentration profiles in nanoconfinement.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0147119</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Accuracy ; Electroosmosis ; Ion concentration ; Ions ; Modelling ; Molecular dynamics ; Nanochannels ; Neural networks ; Simulation</subject><ispartof>The Journal of chemical physics, 2023-09, Vol.159 (9)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-2f54b1070b0293542c7958b371ab61f1c1043b619532643628fa812ccce0066f3</citedby><cites>FETCH-LOGICAL-c325t-2f54b1070b0293542c7958b371ab61f1c1043b619532643628fa812ccce0066f3</cites><orcidid>0000-0003-1410-9077 ; 0000-0003-0723-6246 ; 0000-0002-2952-8576 ; 0000-0003-2096-1178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0147119$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Cao, Zhonglin</creatorcontrib><creatorcontrib>Wang, Yuyang</creatorcontrib><creatorcontrib>Lorsung, Cooper</creatorcontrib><creatorcontrib>Barati Farimani, Amir</creatorcontrib><title>Neural network predicts ion concentration profiles under nanoconfinement</title><title>The Journal of chemical physics</title><description>Modeling the ion concentration profile in nanochannel plays an important role in understanding the electrical double layer and electro-osmotic flow. Due to the non-negligible surface interaction and the effect of discrete solvent molecules, molecular dynamics (MD) simulation is often used as an essential tool to study the behavior of ions under nanoconfinement. Despite the accuracy of MD simulation in modeling nanoconfinement systems, it is computationally expensive. In this work, we propose neural network to predict ion concentration profiles in nanochannels with different configurations, including channel widths, ion molarity, and ion types. By modeling the ion concentration profile as a probability distribution, our neural network can serve as a much faster surrogate model for MD simulation with high accuracy. We further demonstrate the superior prediction accuracy of neural network over XGBoost. Finally, we demonstrated that neural network is flexible in predicting ion concentration profiles with different bin sizes. Overall, our deep learning model is a fast, flexible, and accurate surrogate model to predict ion concentration profiles in nanoconfinement.</description><subject>Accuracy</subject><subject>Electroosmosis</subject><subject>Ion concentration</subject><subject>Ions</subject><subject>Modelling</subject><subject>Molecular dynamics</subject><subject>Nanochannels</subject><subject>Neural networks</subject><subject>Simulation</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX-w4EWFrTP52s1Rilqh6EXPSzZNYOs2qcku4r83tT158DQz8DC8vIRcIswQJLsTM0BeIaojMkGoVVlJBcdkAkCxVBLkKTlLaQ0AWFE-IYsXO0bdF94OXyF-FNtoV50ZUtEFX5jgjfVD1MPu2sbgut6mYvQrGwuvfcjAdd5uMjonJ073yV4c5pS8Pz68zRfl8vXpeX6_LA2jYiipE7xFqKAFqpjg1FRK1C2rULcSHRoEzvKmBKOSM0lrp2ukxhgLIKVjU3K9_5vjfI42Dc2mS8b2vfY2jKmhtQQOgkqR6dUfug5j9DldVkJVlDLFs7rZKxNDStG6Zhu7jY7fDUKz67QRzaHTbG_3Nplu-G3lH_wDhZx0ig</recordid><startdate>20230907</startdate><enddate>20230907</enddate><creator>Cao, Zhonglin</creator><creator>Wang, Yuyang</creator><creator>Lorsung, Cooper</creator><creator>Barati Farimani, Amir</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1410-9077</orcidid><orcidid>https://orcid.org/0000-0003-0723-6246</orcidid><orcidid>https://orcid.org/0000-0002-2952-8576</orcidid><orcidid>https://orcid.org/0000-0003-2096-1178</orcidid></search><sort><creationdate>20230907</creationdate><title>Neural network predicts ion concentration profiles under nanoconfinement</title><author>Cao, Zhonglin ; Wang, Yuyang ; Lorsung, Cooper ; Barati Farimani, Amir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-2f54b1070b0293542c7958b371ab61f1c1043b619532643628fa812ccce0066f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Electroosmosis</topic><topic>Ion concentration</topic><topic>Ions</topic><topic>Modelling</topic><topic>Molecular dynamics</topic><topic>Nanochannels</topic><topic>Neural networks</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Zhonglin</creatorcontrib><creatorcontrib>Wang, Yuyang</creatorcontrib><creatorcontrib>Lorsung, Cooper</creatorcontrib><creatorcontrib>Barati Farimani, Amir</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Zhonglin</au><au>Wang, Yuyang</au><au>Lorsung, Cooper</au><au>Barati Farimani, Amir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural network predicts ion concentration profiles under nanoconfinement</atitle><jtitle>The Journal of chemical physics</jtitle><date>2023-09-07</date><risdate>2023</risdate><volume>159</volume><issue>9</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Modeling the ion concentration profile in nanochannel plays an important role in understanding the electrical double layer and electro-osmotic flow. Due to the non-negligible surface interaction and the effect of discrete solvent molecules, molecular dynamics (MD) simulation is often used as an essential tool to study the behavior of ions under nanoconfinement. Despite the accuracy of MD simulation in modeling nanoconfinement systems, it is computationally expensive. In this work, we propose neural network to predict ion concentration profiles in nanochannels with different configurations, including channel widths, ion molarity, and ion types. By modeling the ion concentration profile as a probability distribution, our neural network can serve as a much faster surrogate model for MD simulation with high accuracy. We further demonstrate the superior prediction accuracy of neural network over XGBoost. Finally, we demonstrated that neural network is flexible in predicting ion concentration profiles with different bin sizes. Overall, our deep learning model is a fast, flexible, and accurate surrogate model to predict ion concentration profiles in nanoconfinement.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0147119</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1410-9077</orcidid><orcidid>https://orcid.org/0000-0003-0723-6246</orcidid><orcidid>https://orcid.org/0000-0002-2952-8576</orcidid><orcidid>https://orcid.org/0000-0003-2096-1178</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2023-09, Vol.159 (9)
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_journals_2859722394
source AIP Journals Complete; Alma/SFX Local Collection
subjects Accuracy
Electroosmosis
Ion concentration
Ions
Modelling
Molecular dynamics
Nanochannels
Neural networks
Simulation
title Neural network predicts ion concentration profiles under nanoconfinement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A44%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20network%20predicts%20ion%20concentration%20profiles%20under%20nanoconfinement&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Cao,%20Zhonglin&rft.date=2023-09-07&rft.volume=159&rft.issue=9&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0147119&rft_dat=%3Cproquest_scita%3E2859722394%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859722394&rft_id=info:pmid/&rfr_iscdi=true