Improving the Efficiency of Deep Learning Models using Supervised Approach for Load Forecasting of Electric Vehicles
This research work proposes an Improved Supervised Learning (ISL)-based Deep Neural Network (DNN) for accurately forecasting the load demand of Electric Vehicles (EVs). This work incorporates Gated Recurrent Unit (GRU), Long Short Term Memory (LSTM), Recurrent Neural Network (RNN), Fully Connected (...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Rasheed, Tallataf Bhatti, Abdul Rauf Farhan, Muhammad Rasool, Akhtar El-Fouly, Tarek H.M. |
description | This research work proposes an Improved Supervised Learning (ISL)-based Deep Neural Network (DNN) for accurately forecasting the load demand of Electric Vehicles (EVs). This work incorporates Gated Recurrent Unit (GRU), Long Short Term Memory (LSTM), Recurrent Neural Network (RNN), Fully Connected (FC), and Convolutional Neural Network (CNN) architectures. The proposed ISL technique enhances prediction performance by refining the training process with additional features and information. Using a real-world EV charging dataset from Boulder City, USA, the simulations demonstrate consistent improvements in the GRU, LSTM, RNN, FC, and CNN models with the proposed ISL technique. Further, the proposed technique reduces the Normalised Root Mean Square Error (NRMSE) and Normalised Mean Absolute Error (NMAE) values. The accurate load demand predictions facilitated by the proposed models with ISL have significant implications for the planning and management of EV charging stations. This enables stakeholders to optimize resource allocation, effectively plan infrastructure capacity, and ensure the sustainable and reliable operation of grids in the face of increasing EV adoption. By leveraging deep learning architectures and incorporating the ISL technique, this research contributes to advancing load forecasting models for EVs, providing practical solutions for efficient management and planning in the evolving electric mobility landscape. |
doi_str_mv | 10.1109/ACCESS.2023.3307022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2859714905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10225522</ieee_id><doaj_id>oai_doaj_org_article_55a083d084254eae9a76fc03ca069d52</doaj_id><sourcerecordid>2859714905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5c498c1823f87b0a9c7e6dc655822f896cf1558a9a2829006fbd0ac83a09a3563</originalsourceid><addsrcrecordid>eNpNUU1PGzEQXSEqgYBf0B4s9Zwwa8de-xiFAJGCOKRwtQbvmDgK8dbeIPHv8XZRhS_z9d6bsV5V_axhWtdgrueLxXKzmXLgYioENMD5SXXOa2UmQgp1-i0_q65y3kF5urRkc171q7cuxfdweGX9ltjS--ACHdwHi57dEHVsTZgOw_whtrTP7JiHYnPsKL2HTC2bd0UB3Zb5mNg6YstuYyKHuR-ARWa5J9en4NgzbYPbU76sfnjcZ7r6ihfV0-3yz-J-sn68Wy3m64kT0vQT6WZGu1pz4XXzAmhcQ6p1SkrNuddGOV-XHA1yzQ2A8i8toNMCwaCQSlxUq1G3jbizXQpvmD5sxGD_NWJ6tZj64SQrJYIWLegZlzNCMtgo70A4BGVayYvW71GrfPbvkXJvd_GYDuV8y7U0TT0zIAtKjCiXYs6J_P-tNdjBLTu6ZQe37JdbhfVrZAUi-sbgXMoy_gSHHJAs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859714905</pqid></control><display><type>article</type><title>Improving the Efficiency of Deep Learning Models using Supervised Approach for Load Forecasting of Electric Vehicles</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Rasheed, Tallataf ; Bhatti, Abdul Rauf ; Farhan, Muhammad ; Rasool, Akhtar ; El-Fouly, Tarek H.M.</creator><creatorcontrib>Rasheed, Tallataf ; Bhatti, Abdul Rauf ; Farhan, Muhammad ; Rasool, Akhtar ; El-Fouly, Tarek H.M.</creatorcontrib><description>This research work proposes an Improved Supervised Learning (ISL)-based Deep Neural Network (DNN) for accurately forecasting the load demand of Electric Vehicles (EVs). This work incorporates Gated Recurrent Unit (GRU), Long Short Term Memory (LSTM), Recurrent Neural Network (RNN), Fully Connected (FC), and Convolutional Neural Network (CNN) architectures. The proposed ISL technique enhances prediction performance by refining the training process with additional features and information. Using a real-world EV charging dataset from Boulder City, USA, the simulations demonstrate consistent improvements in the GRU, LSTM, RNN, FC, and CNN models with the proposed ISL technique. Further, the proposed technique reduces the Normalised Root Mean Square Error (NRMSE) and Normalised Mean Absolute Error (NMAE) values. The accurate load demand predictions facilitated by the proposed models with ISL have significant implications for the planning and management of EV charging stations. This enables stakeholders to optimize resource allocation, effectively plan infrastructure capacity, and ensure the sustainable and reliable operation of grids in the face of increasing EV adoption. By leveraging deep learning architectures and incorporating the ISL technique, this research contributes to advancing load forecasting models for EVs, providing practical solutions for efficient management and planning in the evolving electric mobility landscape.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3307022</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial Neural Network ; Artificial neural networks ; Charging stations ; Convolutional neural networks ; Deep learning ; Electric power demand ; Electric vehicle charging ; Electric vehicles ; Electric Vehicles (EV) ; Forecasting ; Load forecasting ; Load modeling ; Logic gates ; Machine learning ; Mathematical models ; Neural networks ; Predictive models ; Recurrent neural networks ; Resource allocation ; Supervised learning ; Time series analysis</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-5c498c1823f87b0a9c7e6dc655822f896cf1558a9a2829006fbd0ac83a09a3563</cites><orcidid>0000-0002-4789-2902 ; 0000-0001-9609-4563 ; 0000-0002-3349-417X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10225522$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Rasheed, Tallataf</creatorcontrib><creatorcontrib>Bhatti, Abdul Rauf</creatorcontrib><creatorcontrib>Farhan, Muhammad</creatorcontrib><creatorcontrib>Rasool, Akhtar</creatorcontrib><creatorcontrib>El-Fouly, Tarek H.M.</creatorcontrib><title>Improving the Efficiency of Deep Learning Models using Supervised Approach for Load Forecasting of Electric Vehicles</title><title>IEEE access</title><addtitle>Access</addtitle><description>This research work proposes an Improved Supervised Learning (ISL)-based Deep Neural Network (DNN) for accurately forecasting the load demand of Electric Vehicles (EVs). This work incorporates Gated Recurrent Unit (GRU), Long Short Term Memory (LSTM), Recurrent Neural Network (RNN), Fully Connected (FC), and Convolutional Neural Network (CNN) architectures. The proposed ISL technique enhances prediction performance by refining the training process with additional features and information. Using a real-world EV charging dataset from Boulder City, USA, the simulations demonstrate consistent improvements in the GRU, LSTM, RNN, FC, and CNN models with the proposed ISL technique. Further, the proposed technique reduces the Normalised Root Mean Square Error (NRMSE) and Normalised Mean Absolute Error (NMAE) values. The accurate load demand predictions facilitated by the proposed models with ISL have significant implications for the planning and management of EV charging stations. This enables stakeholders to optimize resource allocation, effectively plan infrastructure capacity, and ensure the sustainable and reliable operation of grids in the face of increasing EV adoption. By leveraging deep learning architectures and incorporating the ISL technique, this research contributes to advancing load forecasting models for EVs, providing practical solutions for efficient management and planning in the evolving electric mobility landscape.</description><subject>Artificial Neural Network</subject><subject>Artificial neural networks</subject><subject>Charging stations</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Electric power demand</subject><subject>Electric vehicle charging</subject><subject>Electric vehicles</subject><subject>Electric Vehicles (EV)</subject><subject>Forecasting</subject><subject>Load forecasting</subject><subject>Load modeling</subject><subject>Logic gates</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>Recurrent neural networks</subject><subject>Resource allocation</subject><subject>Supervised learning</subject><subject>Time series analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PGzEQXSEqgYBf0B4s9Zwwa8de-xiFAJGCOKRwtQbvmDgK8dbeIPHv8XZRhS_z9d6bsV5V_axhWtdgrueLxXKzmXLgYioENMD5SXXOa2UmQgp1-i0_q65y3kF5urRkc171q7cuxfdweGX9ltjS--ACHdwHi57dEHVsTZgOw_whtrTP7JiHYnPsKL2HTC2bd0UB3Zb5mNg6YstuYyKHuR-ARWa5J9en4NgzbYPbU76sfnjcZ7r6ihfV0-3yz-J-sn68Wy3m64kT0vQT6WZGu1pz4XXzAmhcQ6p1SkrNuddGOV-XHA1yzQ2A8i8toNMCwaCQSlxUq1G3jbizXQpvmD5sxGD_NWJ6tZj64SQrJYIWLegZlzNCMtgo70A4BGVayYvW71GrfPbvkXJvd_GYDuV8y7U0TT0zIAtKjCiXYs6J_P-tNdjBLTu6ZQe37JdbhfVrZAUi-sbgXMoy_gSHHJAs</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Rasheed, Tallataf</creator><creator>Bhatti, Abdul Rauf</creator><creator>Farhan, Muhammad</creator><creator>Rasool, Akhtar</creator><creator>El-Fouly, Tarek H.M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4789-2902</orcidid><orcidid>https://orcid.org/0000-0001-9609-4563</orcidid><orcidid>https://orcid.org/0000-0002-3349-417X</orcidid></search><sort><creationdate>20230101</creationdate><title>Improving the Efficiency of Deep Learning Models using Supervised Approach for Load Forecasting of Electric Vehicles</title><author>Rasheed, Tallataf ; Bhatti, Abdul Rauf ; Farhan, Muhammad ; Rasool, Akhtar ; El-Fouly, Tarek H.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5c498c1823f87b0a9c7e6dc655822f896cf1558a9a2829006fbd0ac83a09a3563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Neural Network</topic><topic>Artificial neural networks</topic><topic>Charging stations</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Electric power demand</topic><topic>Electric vehicle charging</topic><topic>Electric vehicles</topic><topic>Electric Vehicles (EV)</topic><topic>Forecasting</topic><topic>Load forecasting</topic><topic>Load modeling</topic><topic>Logic gates</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>Recurrent neural networks</topic><topic>Resource allocation</topic><topic>Supervised learning</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rasheed, Tallataf</creatorcontrib><creatorcontrib>Bhatti, Abdul Rauf</creatorcontrib><creatorcontrib>Farhan, Muhammad</creatorcontrib><creatorcontrib>Rasool, Akhtar</creatorcontrib><creatorcontrib>El-Fouly, Tarek H.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rasheed, Tallataf</au><au>Bhatti, Abdul Rauf</au><au>Farhan, Muhammad</au><au>Rasool, Akhtar</au><au>El-Fouly, Tarek H.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the Efficiency of Deep Learning Models using Supervised Approach for Load Forecasting of Electric Vehicles</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This research work proposes an Improved Supervised Learning (ISL)-based Deep Neural Network (DNN) for accurately forecasting the load demand of Electric Vehicles (EVs). This work incorporates Gated Recurrent Unit (GRU), Long Short Term Memory (LSTM), Recurrent Neural Network (RNN), Fully Connected (FC), and Convolutional Neural Network (CNN) architectures. The proposed ISL technique enhances prediction performance by refining the training process with additional features and information. Using a real-world EV charging dataset from Boulder City, USA, the simulations demonstrate consistent improvements in the GRU, LSTM, RNN, FC, and CNN models with the proposed ISL technique. Further, the proposed technique reduces the Normalised Root Mean Square Error (NRMSE) and Normalised Mean Absolute Error (NMAE) values. The accurate load demand predictions facilitated by the proposed models with ISL have significant implications for the planning and management of EV charging stations. This enables stakeholders to optimize resource allocation, effectively plan infrastructure capacity, and ensure the sustainable and reliable operation of grids in the face of increasing EV adoption. By leveraging deep learning architectures and incorporating the ISL technique, this research contributes to advancing load forecasting models for EVs, providing practical solutions for efficient management and planning in the evolving electric mobility landscape.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3307022</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4789-2902</orcidid><orcidid>https://orcid.org/0000-0001-9609-4563</orcidid><orcidid>https://orcid.org/0000-0002-3349-417X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2859714905 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Artificial Neural Network Artificial neural networks Charging stations Convolutional neural networks Deep learning Electric power demand Electric vehicle charging Electric vehicles Electric Vehicles (EV) Forecasting Load forecasting Load modeling Logic gates Machine learning Mathematical models Neural networks Predictive models Recurrent neural networks Resource allocation Supervised learning Time series analysis |
title | Improving the Efficiency of Deep Learning Models using Supervised Approach for Load Forecasting of Electric Vehicles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A18%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20Efficiency%20of%20Deep%20Learning%20Models%20using%20Supervised%20Approach%20for%20Load%20Forecasting%20of%20Electric%20Vehicles&rft.jtitle=IEEE%20access&rft.au=Rasheed,%20Tallataf&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3307022&rft_dat=%3Cproquest_doaj_%3E2859714905%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859714905&rft_id=info:pmid/&rft_ieee_id=10225522&rft_doaj_id=oai_doaj_org_article_55a083d084254eae9a76fc03ca069d52&rfr_iscdi=true |