Improving the Efficiency of Deep Learning Models using Supervised Approach for Load Forecasting of Electric Vehicles

This research work proposes an Improved Supervised Learning (ISL)-based Deep Neural Network (DNN) for accurately forecasting the load demand of Electric Vehicles (EVs). This work incorporates Gated Recurrent Unit (GRU), Long Short Term Memory (LSTM), Recurrent Neural Network (RNN), Fully Connected (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Rasheed, Tallataf, Bhatti, Abdul Rauf, Farhan, Muhammad, Rasool, Akhtar, El-Fouly, Tarek H.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Rasheed, Tallataf
Bhatti, Abdul Rauf
Farhan, Muhammad
Rasool, Akhtar
El-Fouly, Tarek H.M.
description This research work proposes an Improved Supervised Learning (ISL)-based Deep Neural Network (DNN) for accurately forecasting the load demand of Electric Vehicles (EVs). This work incorporates Gated Recurrent Unit (GRU), Long Short Term Memory (LSTM), Recurrent Neural Network (RNN), Fully Connected (FC), and Convolutional Neural Network (CNN) architectures. The proposed ISL technique enhances prediction performance by refining the training process with additional features and information. Using a real-world EV charging dataset from Boulder City, USA, the simulations demonstrate consistent improvements in the GRU, LSTM, RNN, FC, and CNN models with the proposed ISL technique. Further, the proposed technique reduces the Normalised Root Mean Square Error (NRMSE) and Normalised Mean Absolute Error (NMAE) values. The accurate load demand predictions facilitated by the proposed models with ISL have significant implications for the planning and management of EV charging stations. This enables stakeholders to optimize resource allocation, effectively plan infrastructure capacity, and ensure the sustainable and reliable operation of grids in the face of increasing EV adoption. By leveraging deep learning architectures and incorporating the ISL technique, this research contributes to advancing load forecasting models for EVs, providing practical solutions for efficient management and planning in the evolving electric mobility landscape.
doi_str_mv 10.1109/ACCESS.2023.3307022
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2859714905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10225522</ieee_id><doaj_id>oai_doaj_org_article_55a083d084254eae9a76fc03ca069d52</doaj_id><sourcerecordid>2859714905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5c498c1823f87b0a9c7e6dc655822f896cf1558a9a2829006fbd0ac83a09a3563</originalsourceid><addsrcrecordid>eNpNUU1PGzEQXSEqgYBf0B4s9Zwwa8de-xiFAJGCOKRwtQbvmDgK8dbeIPHv8XZRhS_z9d6bsV5V_axhWtdgrueLxXKzmXLgYioENMD5SXXOa2UmQgp1-i0_q65y3kF5urRkc171q7cuxfdweGX9ltjS--ACHdwHi57dEHVsTZgOw_whtrTP7JiHYnPsKL2HTC2bd0UB3Zb5mNg6YstuYyKHuR-ARWa5J9en4NgzbYPbU76sfnjcZ7r6ihfV0-3yz-J-sn68Wy3m64kT0vQT6WZGu1pz4XXzAmhcQ6p1SkrNuddGOV-XHA1yzQ2A8i8toNMCwaCQSlxUq1G3jbizXQpvmD5sxGD_NWJ6tZj64SQrJYIWLegZlzNCMtgo70A4BGVayYvW71GrfPbvkXJvd_GYDuV8y7U0TT0zIAtKjCiXYs6J_P-tNdjBLTu6ZQe37JdbhfVrZAUi-sbgXMoy_gSHHJAs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859714905</pqid></control><display><type>article</type><title>Improving the Efficiency of Deep Learning Models using Supervised Approach for Load Forecasting of Electric Vehicles</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Rasheed, Tallataf ; Bhatti, Abdul Rauf ; Farhan, Muhammad ; Rasool, Akhtar ; El-Fouly, Tarek H.M.</creator><creatorcontrib>Rasheed, Tallataf ; Bhatti, Abdul Rauf ; Farhan, Muhammad ; Rasool, Akhtar ; El-Fouly, Tarek H.M.</creatorcontrib><description>This research work proposes an Improved Supervised Learning (ISL)-based Deep Neural Network (DNN) for accurately forecasting the load demand of Electric Vehicles (EVs). This work incorporates Gated Recurrent Unit (GRU), Long Short Term Memory (LSTM), Recurrent Neural Network (RNN), Fully Connected (FC), and Convolutional Neural Network (CNN) architectures. The proposed ISL technique enhances prediction performance by refining the training process with additional features and information. Using a real-world EV charging dataset from Boulder City, USA, the simulations demonstrate consistent improvements in the GRU, LSTM, RNN, FC, and CNN models with the proposed ISL technique. Further, the proposed technique reduces the Normalised Root Mean Square Error (NRMSE) and Normalised Mean Absolute Error (NMAE) values. The accurate load demand predictions facilitated by the proposed models with ISL have significant implications for the planning and management of EV charging stations. This enables stakeholders to optimize resource allocation, effectively plan infrastructure capacity, and ensure the sustainable and reliable operation of grids in the face of increasing EV adoption. By leveraging deep learning architectures and incorporating the ISL technique, this research contributes to advancing load forecasting models for EVs, providing practical solutions for efficient management and planning in the evolving electric mobility landscape.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3307022</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial Neural Network ; Artificial neural networks ; Charging stations ; Convolutional neural networks ; Deep learning ; Electric power demand ; Electric vehicle charging ; Electric vehicles ; Electric Vehicles (EV) ; Forecasting ; Load forecasting ; Load modeling ; Logic gates ; Machine learning ; Mathematical models ; Neural networks ; Predictive models ; Recurrent neural networks ; Resource allocation ; Supervised learning ; Time series analysis</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-5c498c1823f87b0a9c7e6dc655822f896cf1558a9a2829006fbd0ac83a09a3563</cites><orcidid>0000-0002-4789-2902 ; 0000-0001-9609-4563 ; 0000-0002-3349-417X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10225522$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Rasheed, Tallataf</creatorcontrib><creatorcontrib>Bhatti, Abdul Rauf</creatorcontrib><creatorcontrib>Farhan, Muhammad</creatorcontrib><creatorcontrib>Rasool, Akhtar</creatorcontrib><creatorcontrib>El-Fouly, Tarek H.M.</creatorcontrib><title>Improving the Efficiency of Deep Learning Models using Supervised Approach for Load Forecasting of Electric Vehicles</title><title>IEEE access</title><addtitle>Access</addtitle><description>This research work proposes an Improved Supervised Learning (ISL)-based Deep Neural Network (DNN) for accurately forecasting the load demand of Electric Vehicles (EVs). This work incorporates Gated Recurrent Unit (GRU), Long Short Term Memory (LSTM), Recurrent Neural Network (RNN), Fully Connected (FC), and Convolutional Neural Network (CNN) architectures. The proposed ISL technique enhances prediction performance by refining the training process with additional features and information. Using a real-world EV charging dataset from Boulder City, USA, the simulations demonstrate consistent improvements in the GRU, LSTM, RNN, FC, and CNN models with the proposed ISL technique. Further, the proposed technique reduces the Normalised Root Mean Square Error (NRMSE) and Normalised Mean Absolute Error (NMAE) values. The accurate load demand predictions facilitated by the proposed models with ISL have significant implications for the planning and management of EV charging stations. This enables stakeholders to optimize resource allocation, effectively plan infrastructure capacity, and ensure the sustainable and reliable operation of grids in the face of increasing EV adoption. By leveraging deep learning architectures and incorporating the ISL technique, this research contributes to advancing load forecasting models for EVs, providing practical solutions for efficient management and planning in the evolving electric mobility landscape.</description><subject>Artificial Neural Network</subject><subject>Artificial neural networks</subject><subject>Charging stations</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Electric power demand</subject><subject>Electric vehicle charging</subject><subject>Electric vehicles</subject><subject>Electric Vehicles (EV)</subject><subject>Forecasting</subject><subject>Load forecasting</subject><subject>Load modeling</subject><subject>Logic gates</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>Recurrent neural networks</subject><subject>Resource allocation</subject><subject>Supervised learning</subject><subject>Time series analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PGzEQXSEqgYBf0B4s9Zwwa8de-xiFAJGCOKRwtQbvmDgK8dbeIPHv8XZRhS_z9d6bsV5V_axhWtdgrueLxXKzmXLgYioENMD5SXXOa2UmQgp1-i0_q65y3kF5urRkc171q7cuxfdweGX9ltjS--ACHdwHi57dEHVsTZgOw_whtrTP7JiHYnPsKL2HTC2bd0UB3Zb5mNg6YstuYyKHuR-ARWa5J9en4NgzbYPbU76sfnjcZ7r6ihfV0-3yz-J-sn68Wy3m64kT0vQT6WZGu1pz4XXzAmhcQ6p1SkrNuddGOV-XHA1yzQ2A8i8toNMCwaCQSlxUq1G3jbizXQpvmD5sxGD_NWJ6tZj64SQrJYIWLegZlzNCMtgo70A4BGVayYvW71GrfPbvkXJvd_GYDuV8y7U0TT0zIAtKjCiXYs6J_P-tNdjBLTu6ZQe37JdbhfVrZAUi-sbgXMoy_gSHHJAs</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Rasheed, Tallataf</creator><creator>Bhatti, Abdul Rauf</creator><creator>Farhan, Muhammad</creator><creator>Rasool, Akhtar</creator><creator>El-Fouly, Tarek H.M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4789-2902</orcidid><orcidid>https://orcid.org/0000-0001-9609-4563</orcidid><orcidid>https://orcid.org/0000-0002-3349-417X</orcidid></search><sort><creationdate>20230101</creationdate><title>Improving the Efficiency of Deep Learning Models using Supervised Approach for Load Forecasting of Electric Vehicles</title><author>Rasheed, Tallataf ; Bhatti, Abdul Rauf ; Farhan, Muhammad ; Rasool, Akhtar ; El-Fouly, Tarek H.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5c498c1823f87b0a9c7e6dc655822f896cf1558a9a2829006fbd0ac83a09a3563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Neural Network</topic><topic>Artificial neural networks</topic><topic>Charging stations</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Electric power demand</topic><topic>Electric vehicle charging</topic><topic>Electric vehicles</topic><topic>Electric Vehicles (EV)</topic><topic>Forecasting</topic><topic>Load forecasting</topic><topic>Load modeling</topic><topic>Logic gates</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>Recurrent neural networks</topic><topic>Resource allocation</topic><topic>Supervised learning</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rasheed, Tallataf</creatorcontrib><creatorcontrib>Bhatti, Abdul Rauf</creatorcontrib><creatorcontrib>Farhan, Muhammad</creatorcontrib><creatorcontrib>Rasool, Akhtar</creatorcontrib><creatorcontrib>El-Fouly, Tarek H.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rasheed, Tallataf</au><au>Bhatti, Abdul Rauf</au><au>Farhan, Muhammad</au><au>Rasool, Akhtar</au><au>El-Fouly, Tarek H.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the Efficiency of Deep Learning Models using Supervised Approach for Load Forecasting of Electric Vehicles</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This research work proposes an Improved Supervised Learning (ISL)-based Deep Neural Network (DNN) for accurately forecasting the load demand of Electric Vehicles (EVs). This work incorporates Gated Recurrent Unit (GRU), Long Short Term Memory (LSTM), Recurrent Neural Network (RNN), Fully Connected (FC), and Convolutional Neural Network (CNN) architectures. The proposed ISL technique enhances prediction performance by refining the training process with additional features and information. Using a real-world EV charging dataset from Boulder City, USA, the simulations demonstrate consistent improvements in the GRU, LSTM, RNN, FC, and CNN models with the proposed ISL technique. Further, the proposed technique reduces the Normalised Root Mean Square Error (NRMSE) and Normalised Mean Absolute Error (NMAE) values. The accurate load demand predictions facilitated by the proposed models with ISL have significant implications for the planning and management of EV charging stations. This enables stakeholders to optimize resource allocation, effectively plan infrastructure capacity, and ensure the sustainable and reliable operation of grids in the face of increasing EV adoption. By leveraging deep learning architectures and incorporating the ISL technique, this research contributes to advancing load forecasting models for EVs, providing practical solutions for efficient management and planning in the evolving electric mobility landscape.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3307022</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4789-2902</orcidid><orcidid>https://orcid.org/0000-0001-9609-4563</orcidid><orcidid>https://orcid.org/0000-0002-3349-417X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2859714905
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Artificial Neural Network
Artificial neural networks
Charging stations
Convolutional neural networks
Deep learning
Electric power demand
Electric vehicle charging
Electric vehicles
Electric Vehicles (EV)
Forecasting
Load forecasting
Load modeling
Logic gates
Machine learning
Mathematical models
Neural networks
Predictive models
Recurrent neural networks
Resource allocation
Supervised learning
Time series analysis
title Improving the Efficiency of Deep Learning Models using Supervised Approach for Load Forecasting of Electric Vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A18%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20Efficiency%20of%20Deep%20Learning%20Models%20using%20Supervised%20Approach%20for%20Load%20Forecasting%20of%20Electric%20Vehicles&rft.jtitle=IEEE%20access&rft.au=Rasheed,%20Tallataf&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3307022&rft_dat=%3Cproquest_doaj_%3E2859714905%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859714905&rft_id=info:pmid/&rft_ieee_id=10225522&rft_doaj_id=oai_doaj_org_article_55a083d084254eae9a76fc03ca069d52&rfr_iscdi=true