Nonautoregressive Encoder-Decoder Neural Framework for End-to-End Aspect-Based Sentiment Triplet Extraction

Aspect-based sentiment triplet extraction (ASTE) aims at recognizing the joint triplets from texts, i.e., aspect terms, opinion expressions, and correlated sentiment polarities. As a newly proposed task, ASTE depicts the complete sentiment picture from different perspectives to better facilitate rea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2023-09, Vol.34 (9), p.5544-5556
Hauptverfasser: Fei, Hao, Ren, Yafeng, Zhang, Yue, Ji, Donghong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5556
container_issue 9
container_start_page 5544
container_title IEEE transaction on neural networks and learning systems
container_volume 34
creator Fei, Hao
Ren, Yafeng
Zhang, Yue
Ji, Donghong
description Aspect-based sentiment triplet extraction (ASTE) aims at recognizing the joint triplets from texts, i.e., aspect terms, opinion expressions, and correlated sentiment polarities. As a newly proposed task, ASTE depicts the complete sentiment picture from different perspectives to better facilitate real-world applications. Unfortunately, several major challenges, such as the overlapping issue and long-distance dependency, have not been addressed effectively by the existing ASTE methods, which limits the performance of the task. In this article, we present an innovative encoder-decoder framework for end-to-end ASTE. Specifically, the ASTE task is first modeled as an unordered triplet set prediction problem, which is satisfied with a nonautoregressive decoding paradigm with a pointer network. Second, a novel high-order aggregation mechanism is proposed for fully integrating the underlying interactions between the overlapping structure of aspect and opinion terms. Third, a bipartite matching loss is introduced for facilitating the training of our nonautoregressive system. Experimental results on benchmark datasets show that our proposed framework significantly outperforms the state-of-the-art methods. Further analysis demonstrates the advantages of the proposed framework in handling the overlapping issue, relieving long-distance dependency and decoding efficiency.
doi_str_mv 10.1109/TNNLS.2021.3129483
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2859709860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9634849</ieee_id><sourcerecordid>2859709860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-8359264c0af49e4096343df6bf2871d63475af82575c4e5dd5af8405a7dd7e813</originalsourceid><addsrcrecordid>eNpdkctOwzAQRS0EAgT8AGwisWGT4nfsJY8WkKqyaJHYWSaeoEAaF9vh8fe4FLHAC98Z6VzLMxehY4JHhGB9vpjNpvMRxZSMGKGaK7aF9imRtKRMqe2_unrcQ0cxvuB8JBaS6120x7iSWAqxj15nvrdD8gGeA8TYvkMx7mvvIJTX8KPFDIZgu2IS7BI-fHgtGh8y5MrkyyzFRVxBncpLG8EVc-hTu8xXsQjtqoNUjD9TsHVqfX-IdhrbRTj61QP0MBkvrm7L6f3N3dXFtKwZValUTGgqeY1twzVwrCXjzDXyqaGqIi53lbCNoqISNQfh3LrjWNjKuQoUYQfobPPuKvi3AWIyyzbW0HW2Bz9EQ_PsmjGhZEZP_6Evfgh9_p2hSugK67yoTNENVQcfY4DGrEK7tOHLEGzWaZifNMw6DfObRjadbEwtAPwZ1sMortk3KxeEDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859709860</pqid></control><display><type>article</type><title>Nonautoregressive Encoder-Decoder Neural Framework for End-to-End Aspect-Based Sentiment Triplet Extraction</title><source>IEEE Electronic Library (IEL)</source><creator>Fei, Hao ; Ren, Yafeng ; Zhang, Yue ; Ji, Donghong</creator><creatorcontrib>Fei, Hao ; Ren, Yafeng ; Zhang, Yue ; Ji, Donghong</creatorcontrib><description>Aspect-based sentiment triplet extraction (ASTE) aims at recognizing the joint triplets from texts, i.e., aspect terms, opinion expressions, and correlated sentiment polarities. As a newly proposed task, ASTE depicts the complete sentiment picture from different perspectives to better facilitate real-world applications. Unfortunately, several major challenges, such as the overlapping issue and long-distance dependency, have not been addressed effectively by the existing ASTE methods, which limits the performance of the task. In this article, we present an innovative encoder-decoder framework for end-to-end ASTE. Specifically, the ASTE task is first modeled as an unordered triplet set prediction problem, which is satisfied with a nonautoregressive decoding paradigm with a pointer network. Second, a novel high-order aggregation mechanism is proposed for fully integrating the underlying interactions between the overlapping structure of aspect and opinion terms. Third, a bipartite matching loss is introduced for facilitating the training of our nonautoregressive system. Experimental results on benchmark datasets show that our proposed framework significantly outperforms the state-of-the-art methods. Further analysis demonstrates the advantages of the proposed framework in handling the overlapping issue, relieving long-distance dependency and decoding efficiency.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2021.3129483</identifier><identifier>PMID: 34860655</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; Bipartite matching loss ; Coders ; Decoding ; encoder–decoder framework ; Labeling ; natural language processing (NLP) ; nonautoregressive decoding ; pointer network ; Predictive models ; Sentiment analysis ; Task analysis ; Transformers</subject><ispartof>IEEE transaction on neural networks and learning systems, 2023-09, Vol.34 (9), p.5544-5556</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-8359264c0af49e4096343df6bf2871d63475af82575c4e5dd5af8405a7dd7e813</citedby><cites>FETCH-LOGICAL-c328t-8359264c0af49e4096343df6bf2871d63475af82575c4e5dd5af8405a7dd7e813</cites><orcidid>0000-0002-5214-2268 ; 0000-0003-3026-6347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9634849$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9634849$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fei, Hao</creatorcontrib><creatorcontrib>Ren, Yafeng</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Ji, Donghong</creatorcontrib><title>Nonautoregressive Encoder-Decoder Neural Framework for End-to-End Aspect-Based Sentiment Triplet Extraction</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><description>Aspect-based sentiment triplet extraction (ASTE) aims at recognizing the joint triplets from texts, i.e., aspect terms, opinion expressions, and correlated sentiment polarities. As a newly proposed task, ASTE depicts the complete sentiment picture from different perspectives to better facilitate real-world applications. Unfortunately, several major challenges, such as the overlapping issue and long-distance dependency, have not been addressed effectively by the existing ASTE methods, which limits the performance of the task. In this article, we present an innovative encoder-decoder framework for end-to-end ASTE. Specifically, the ASTE task is first modeled as an unordered triplet set prediction problem, which is satisfied with a nonautoregressive decoding paradigm with a pointer network. Second, a novel high-order aggregation mechanism is proposed for fully integrating the underlying interactions between the overlapping structure of aspect and opinion terms. Third, a bipartite matching loss is introduced for facilitating the training of our nonautoregressive system. Experimental results on benchmark datasets show that our proposed framework significantly outperforms the state-of-the-art methods. Further analysis demonstrates the advantages of the proposed framework in handling the overlapping issue, relieving long-distance dependency and decoding efficiency.</description><subject>Analytical models</subject><subject>Bipartite matching loss</subject><subject>Coders</subject><subject>Decoding</subject><subject>encoder–decoder framework</subject><subject>Labeling</subject><subject>natural language processing (NLP)</subject><subject>nonautoregressive decoding</subject><subject>pointer network</subject><subject>Predictive models</subject><subject>Sentiment analysis</subject><subject>Task analysis</subject><subject>Transformers</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkctOwzAQRS0EAgT8AGwisWGT4nfsJY8WkKqyaJHYWSaeoEAaF9vh8fe4FLHAC98Z6VzLMxehY4JHhGB9vpjNpvMRxZSMGKGaK7aF9imRtKRMqe2_unrcQ0cxvuB8JBaS6120x7iSWAqxj15nvrdD8gGeA8TYvkMx7mvvIJTX8KPFDIZgu2IS7BI-fHgtGh8y5MrkyyzFRVxBncpLG8EVc-hTu8xXsQjtqoNUjD9TsHVqfX-IdhrbRTj61QP0MBkvrm7L6f3N3dXFtKwZValUTGgqeY1twzVwrCXjzDXyqaGqIi53lbCNoqISNQfh3LrjWNjKuQoUYQfobPPuKvi3AWIyyzbW0HW2Bz9EQ_PsmjGhZEZP_6Evfgh9_p2hSugK67yoTNENVQcfY4DGrEK7tOHLEGzWaZifNMw6DfObRjadbEwtAPwZ1sMortk3KxeEDw</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Fei, Hao</creator><creator>Ren, Yafeng</creator><creator>Zhang, Yue</creator><creator>Ji, Donghong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5214-2268</orcidid><orcidid>https://orcid.org/0000-0003-3026-6347</orcidid></search><sort><creationdate>20230901</creationdate><title>Nonautoregressive Encoder-Decoder Neural Framework for End-to-End Aspect-Based Sentiment Triplet Extraction</title><author>Fei, Hao ; Ren, Yafeng ; Zhang, Yue ; Ji, Donghong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-8359264c0af49e4096343df6bf2871d63475af82575c4e5dd5af8405a7dd7e813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical models</topic><topic>Bipartite matching loss</topic><topic>Coders</topic><topic>Decoding</topic><topic>encoder–decoder framework</topic><topic>Labeling</topic><topic>natural language processing (NLP)</topic><topic>nonautoregressive decoding</topic><topic>pointer network</topic><topic>Predictive models</topic><topic>Sentiment analysis</topic><topic>Task analysis</topic><topic>Transformers</topic><toplevel>online_resources</toplevel><creatorcontrib>Fei, Hao</creatorcontrib><creatorcontrib>Ren, Yafeng</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Ji, Donghong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fei, Hao</au><au>Ren, Yafeng</au><au>Zhang, Yue</au><au>Ji, Donghong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonautoregressive Encoder-Decoder Neural Framework for End-to-End Aspect-Based Sentiment Triplet Extraction</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>34</volume><issue>9</issue><spage>5544</spage><epage>5556</epage><pages>5544-5556</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Aspect-based sentiment triplet extraction (ASTE) aims at recognizing the joint triplets from texts, i.e., aspect terms, opinion expressions, and correlated sentiment polarities. As a newly proposed task, ASTE depicts the complete sentiment picture from different perspectives to better facilitate real-world applications. Unfortunately, several major challenges, such as the overlapping issue and long-distance dependency, have not been addressed effectively by the existing ASTE methods, which limits the performance of the task. In this article, we present an innovative encoder-decoder framework for end-to-end ASTE. Specifically, the ASTE task is first modeled as an unordered triplet set prediction problem, which is satisfied with a nonautoregressive decoding paradigm with a pointer network. Second, a novel high-order aggregation mechanism is proposed for fully integrating the underlying interactions between the overlapping structure of aspect and opinion terms. Third, a bipartite matching loss is introduced for facilitating the training of our nonautoregressive system. Experimental results on benchmark datasets show that our proposed framework significantly outperforms the state-of-the-art methods. Further analysis demonstrates the advantages of the proposed framework in handling the overlapping issue, relieving long-distance dependency and decoding efficiency.</abstract><cop>Piscataway</cop><pub>IEEE</pub><pmid>34860655</pmid><doi>10.1109/TNNLS.2021.3129483</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5214-2268</orcidid><orcidid>https://orcid.org/0000-0003-3026-6347</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2023-09, Vol.34 (9), p.5544-5556
issn 2162-237X
2162-2388
language eng
recordid cdi_proquest_journals_2859709860
source IEEE Electronic Library (IEL)
subjects Analytical models
Bipartite matching loss
Coders
Decoding
encoder–decoder framework
Labeling
natural language processing (NLP)
nonautoregressive decoding
pointer network
Predictive models
Sentiment analysis
Task analysis
Transformers
title Nonautoregressive Encoder-Decoder Neural Framework for End-to-End Aspect-Based Sentiment Triplet Extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A39%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonautoregressive%20Encoder-Decoder%20Neural%20Framework%20for%20End-to-End%20Aspect-Based%20Sentiment%20Triplet%20Extraction&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Fei,%20Hao&rft.date=2023-09-01&rft.volume=34&rft.issue=9&rft.spage=5544&rft.epage=5556&rft.pages=5544-5556&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2021.3129483&rft_dat=%3Cproquest_RIE%3E2859709860%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859709860&rft_id=info:pmid/34860655&rft_ieee_id=9634849&rfr_iscdi=true