Parametric study and optimization of pillow-plate heat exchanger using multi-objective genetic algorithm and entropy generation minimization approaches

The pillow-plate heat exchanger (PPHE) is a kind of heat exchanger constructed by a set of wavy surfaces like a pillow. In this study, the influence of pillow-plate geometrical parameters (including dimensionless channel height, dimensionless plate width, and pillow plates number) and flow specifica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heat and mass transfer 2023-09, Vol.59 (9), p.1687-1706
Hauptverfasser: Tavallaei, Mohsen, Farzaneh-Gord, Mahmood, Moghadam, Ali Jabari, Ebrahimi-Moghadam, Amir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1706
container_issue 9
container_start_page 1687
container_title Heat and mass transfer
container_volume 59
creator Tavallaei, Mohsen
Farzaneh-Gord, Mahmood
Moghadam, Ali Jabari
Ebrahimi-Moghadam, Amir
description The pillow-plate heat exchanger (PPHE) is a kind of heat exchanger constructed by a set of wavy surfaces like a pillow. In this study, the influence of pillow-plate geometrical parameters (including dimensionless channel height, dimensionless plate width, and pillow plates number) and flow specification (including Reynolds and Prandtl numbers) in terms of derived dimensionless parameters on their thermo-hydraulic performance is evaluated through a comprehensive parametric investigation. The fully developed regime in PPHE channel is assumed and fluid flow, heat transfer, and thermodynamics principles are combined in terms of the entropy generation minimization (EGM) approach. Afterwards, a multi-objective optimization method is applied by using the non-dominated sorting genetic algorithm (NSGA-II) to find the optimal design of PPHE. In this way, the maximization of performance evaluation criterion (PEC) against the minimum total entropy generation for PPHE is eventuated. The behavior of PPHE’s important evaluation criteria are illustrated for different Reynolds numbers from 1000 to 6000 by varying Prandtl number and the proposed dimensionless geometry parameters. Also, contrariness between two parts of non-dimensional entropy generation (NDEG), i.e., thermal and frictional, is concluded from the result for Pareto-optimal front. It indicates there is an optimum Re number that minimizes (NDEG) tot at any geometrical parameters. On the other hand, multi-objective optimization results show the conflict between two main objective functions namely PEC and (NDEG) tot that reveals any geometrical change to increase in the PEC of heat exchanger leads rising in total entropy generation and vice versa. The final optimum values of the objective functions are PEC opt  = 1.3712 and (NDEG) tot,opt  = 0.0145 which occurs at Re = 3265.
doi_str_mv 10.1007/s00231-023-03363-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2859653583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2859653583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-e5671fe7e8e838f515af017d73eba0046142beec595fc5f6b317324d180897a03</originalsourceid><addsrcrecordid>eNp9kc1OwzAQhC0EEqXwApwscTbYcRynR1TxJ1WCA5wtJ9mkrpI42A60vAivi2mQeuOye9iZb6QdhC4ZvWaUyhtPacIZiYNQzjNOtkdoxlKeEMZydoxmdJFKIlPGTtGZ95soz9KEz9D3i3a6g-BMiX0Yqx3WfYXtEExnvnQwtse2xoNpW_tJhlYHwGvQAcO2XOu-AYdHb_oGd2MbDLHFBspgPgA30EOITN021pmw7vZc6IOzw25_dRO9M_0hSg-Ds7pcgz9HJ7VuPVz87Tl6u797XT6S1fPD0_J2RcpE0kBAZJLVICGHnOe1YELXlMlKcig0pWnG0qQAKMVC1KWos4IzyZO0YjnNF1JTPkdXEzcGv4_gg9rY0fUxUiW5WGSCi5xHVTKpSme9d1CrwZlOu51iVP0WoKYCVBxqX4DaRhOfTD6Kf191QP_j-gHe3Y2p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859653583</pqid></control><display><type>article</type><title>Parametric study and optimization of pillow-plate heat exchanger using multi-objective genetic algorithm and entropy generation minimization approaches</title><source>Springer Nature - Complete Springer Journals</source><creator>Tavallaei, Mohsen ; Farzaneh-Gord, Mahmood ; Moghadam, Ali Jabari ; Ebrahimi-Moghadam, Amir</creator><creatorcontrib>Tavallaei, Mohsen ; Farzaneh-Gord, Mahmood ; Moghadam, Ali Jabari ; Ebrahimi-Moghadam, Amir</creatorcontrib><description>The pillow-plate heat exchanger (PPHE) is a kind of heat exchanger constructed by a set of wavy surfaces like a pillow. In this study, the influence of pillow-plate geometrical parameters (including dimensionless channel height, dimensionless plate width, and pillow plates number) and flow specification (including Reynolds and Prandtl numbers) in terms of derived dimensionless parameters on their thermo-hydraulic performance is evaluated through a comprehensive parametric investigation. The fully developed regime in PPHE channel is assumed and fluid flow, heat transfer, and thermodynamics principles are combined in terms of the entropy generation minimization (EGM) approach. Afterwards, a multi-objective optimization method is applied by using the non-dominated sorting genetic algorithm (NSGA-II) to find the optimal design of PPHE. In this way, the maximization of performance evaluation criterion (PEC) against the minimum total entropy generation for PPHE is eventuated. The behavior of PPHE’s important evaluation criteria are illustrated for different Reynolds numbers from 1000 to 6000 by varying Prandtl number and the proposed dimensionless geometry parameters. Also, contrariness between two parts of non-dimensional entropy generation (NDEG), i.e., thermal and frictional, is concluded from the result for Pareto-optimal front. It indicates there is an optimum Re number that minimizes (NDEG) tot at any geometrical parameters. On the other hand, multi-objective optimization results show the conflict between two main objective functions namely PEC and (NDEG) tot that reveals any geometrical change to increase in the PEC of heat exchanger leads rising in total entropy generation and vice versa. The final optimum values of the objective functions are PEC opt  = 1.3712 and (NDEG) tot,opt  = 0.0145 which occurs at Re = 3265.</description><identifier>ISSN: 0947-7411</identifier><identifier>EISSN: 1432-1181</identifier><identifier>DOI: 10.1007/s00231-023-03363-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bedding ; Dimensionless numbers ; Engineering ; Engineering Thermodynamics ; Entropy ; Fluid flow ; Genetic algorithms ; Heat and Mass Transfer ; Heat exchangers ; Industrial Chemistry/Chemical Engineering ; Multiple objective analysis ; Optimization ; Original Article ; Parameters ; Parametric statistics ; Pareto optimization ; Performance evaluation ; Plate heat exchangers ; Prandtl number ; Reynolds number ; Sorting algorithms ; Thermodynamics</subject><ispartof>Heat and mass transfer, 2023-09, Vol.59 (9), p.1687-1706</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-e5671fe7e8e838f515af017d73eba0046142beec595fc5f6b317324d180897a03</cites><orcidid>0000-0003-2078-2081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00231-023-03363-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00231-023-03363-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Tavallaei, Mohsen</creatorcontrib><creatorcontrib>Farzaneh-Gord, Mahmood</creatorcontrib><creatorcontrib>Moghadam, Ali Jabari</creatorcontrib><creatorcontrib>Ebrahimi-Moghadam, Amir</creatorcontrib><title>Parametric study and optimization of pillow-plate heat exchanger using multi-objective genetic algorithm and entropy generation minimization approaches</title><title>Heat and mass transfer</title><addtitle>Heat Mass Transfer</addtitle><description>The pillow-plate heat exchanger (PPHE) is a kind of heat exchanger constructed by a set of wavy surfaces like a pillow. In this study, the influence of pillow-plate geometrical parameters (including dimensionless channel height, dimensionless plate width, and pillow plates number) and flow specification (including Reynolds and Prandtl numbers) in terms of derived dimensionless parameters on their thermo-hydraulic performance is evaluated through a comprehensive parametric investigation. The fully developed regime in PPHE channel is assumed and fluid flow, heat transfer, and thermodynamics principles are combined in terms of the entropy generation minimization (EGM) approach. Afterwards, a multi-objective optimization method is applied by using the non-dominated sorting genetic algorithm (NSGA-II) to find the optimal design of PPHE. In this way, the maximization of performance evaluation criterion (PEC) against the minimum total entropy generation for PPHE is eventuated. The behavior of PPHE’s important evaluation criteria are illustrated for different Reynolds numbers from 1000 to 6000 by varying Prandtl number and the proposed dimensionless geometry parameters. Also, contrariness between two parts of non-dimensional entropy generation (NDEG), i.e., thermal and frictional, is concluded from the result for Pareto-optimal front. It indicates there is an optimum Re number that minimizes (NDEG) tot at any geometrical parameters. On the other hand, multi-objective optimization results show the conflict between two main objective functions namely PEC and (NDEG) tot that reveals any geometrical change to increase in the PEC of heat exchanger leads rising in total entropy generation and vice versa. The final optimum values of the objective functions are PEC opt  = 1.3712 and (NDEG) tot,opt  = 0.0145 which occurs at Re = 3265.</description><subject>Bedding</subject><subject>Dimensionless numbers</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Entropy</subject><subject>Fluid flow</subject><subject>Genetic algorithms</subject><subject>Heat and Mass Transfer</subject><subject>Heat exchangers</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Parameters</subject><subject>Parametric statistics</subject><subject>Pareto optimization</subject><subject>Performance evaluation</subject><subject>Plate heat exchangers</subject><subject>Prandtl number</subject><subject>Reynolds number</subject><subject>Sorting algorithms</subject><subject>Thermodynamics</subject><issn>0947-7411</issn><issn>1432-1181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kc1OwzAQhC0EEqXwApwscTbYcRynR1TxJ1WCA5wtJ9mkrpI42A60vAivi2mQeuOye9iZb6QdhC4ZvWaUyhtPacIZiYNQzjNOtkdoxlKeEMZydoxmdJFKIlPGTtGZ95soz9KEz9D3i3a6g-BMiX0Yqx3WfYXtEExnvnQwtse2xoNpW_tJhlYHwGvQAcO2XOu-AYdHb_oGd2MbDLHFBspgPgA30EOITN021pmw7vZc6IOzw25_dRO9M_0hSg-Ds7pcgz9HJ7VuPVz87Tl6u797XT6S1fPD0_J2RcpE0kBAZJLVICGHnOe1YELXlMlKcig0pWnG0qQAKMVC1KWos4IzyZO0YjnNF1JTPkdXEzcGv4_gg9rY0fUxUiW5WGSCi5xHVTKpSme9d1CrwZlOu51iVP0WoKYCVBxqX4DaRhOfTD6Kf191QP_j-gHe3Y2p</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Tavallaei, Mohsen</creator><creator>Farzaneh-Gord, Mahmood</creator><creator>Moghadam, Ali Jabari</creator><creator>Ebrahimi-Moghadam, Amir</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2078-2081</orcidid></search><sort><creationdate>20230901</creationdate><title>Parametric study and optimization of pillow-plate heat exchanger using multi-objective genetic algorithm and entropy generation minimization approaches</title><author>Tavallaei, Mohsen ; Farzaneh-Gord, Mahmood ; Moghadam, Ali Jabari ; Ebrahimi-Moghadam, Amir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-e5671fe7e8e838f515af017d73eba0046142beec595fc5f6b317324d180897a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bedding</topic><topic>Dimensionless numbers</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Entropy</topic><topic>Fluid flow</topic><topic>Genetic algorithms</topic><topic>Heat and Mass Transfer</topic><topic>Heat exchangers</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Parameters</topic><topic>Parametric statistics</topic><topic>Pareto optimization</topic><topic>Performance evaluation</topic><topic>Plate heat exchangers</topic><topic>Prandtl number</topic><topic>Reynolds number</topic><topic>Sorting algorithms</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tavallaei, Mohsen</creatorcontrib><creatorcontrib>Farzaneh-Gord, Mahmood</creatorcontrib><creatorcontrib>Moghadam, Ali Jabari</creatorcontrib><creatorcontrib>Ebrahimi-Moghadam, Amir</creatorcontrib><collection>CrossRef</collection><jtitle>Heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tavallaei, Mohsen</au><au>Farzaneh-Gord, Mahmood</au><au>Moghadam, Ali Jabari</au><au>Ebrahimi-Moghadam, Amir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametric study and optimization of pillow-plate heat exchanger using multi-objective genetic algorithm and entropy generation minimization approaches</atitle><jtitle>Heat and mass transfer</jtitle><stitle>Heat Mass Transfer</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>59</volume><issue>9</issue><spage>1687</spage><epage>1706</epage><pages>1687-1706</pages><issn>0947-7411</issn><eissn>1432-1181</eissn><abstract>The pillow-plate heat exchanger (PPHE) is a kind of heat exchanger constructed by a set of wavy surfaces like a pillow. In this study, the influence of pillow-plate geometrical parameters (including dimensionless channel height, dimensionless plate width, and pillow plates number) and flow specification (including Reynolds and Prandtl numbers) in terms of derived dimensionless parameters on their thermo-hydraulic performance is evaluated through a comprehensive parametric investigation. The fully developed regime in PPHE channel is assumed and fluid flow, heat transfer, and thermodynamics principles are combined in terms of the entropy generation minimization (EGM) approach. Afterwards, a multi-objective optimization method is applied by using the non-dominated sorting genetic algorithm (NSGA-II) to find the optimal design of PPHE. In this way, the maximization of performance evaluation criterion (PEC) against the minimum total entropy generation for PPHE is eventuated. The behavior of PPHE’s important evaluation criteria are illustrated for different Reynolds numbers from 1000 to 6000 by varying Prandtl number and the proposed dimensionless geometry parameters. Also, contrariness between two parts of non-dimensional entropy generation (NDEG), i.e., thermal and frictional, is concluded from the result for Pareto-optimal front. It indicates there is an optimum Re number that minimizes (NDEG) tot at any geometrical parameters. On the other hand, multi-objective optimization results show the conflict between two main objective functions namely PEC and (NDEG) tot that reveals any geometrical change to increase in the PEC of heat exchanger leads rising in total entropy generation and vice versa. The final optimum values of the objective functions are PEC opt  = 1.3712 and (NDEG) tot,opt  = 0.0145 which occurs at Re = 3265.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00231-023-03363-x</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-2078-2081</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-7411
ispartof Heat and mass transfer, 2023-09, Vol.59 (9), p.1687-1706
issn 0947-7411
1432-1181
language eng
recordid cdi_proquest_journals_2859653583
source Springer Nature - Complete Springer Journals
subjects Bedding
Dimensionless numbers
Engineering
Engineering Thermodynamics
Entropy
Fluid flow
Genetic algorithms
Heat and Mass Transfer
Heat exchangers
Industrial Chemistry/Chemical Engineering
Multiple objective analysis
Optimization
Original Article
Parameters
Parametric statistics
Pareto optimization
Performance evaluation
Plate heat exchangers
Prandtl number
Reynolds number
Sorting algorithms
Thermodynamics
title Parametric study and optimization of pillow-plate heat exchanger using multi-objective genetic algorithm and entropy generation minimization approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A15%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametric%20study%20and%20optimization%20of%20pillow-plate%20heat%20exchanger%20using%20multi-objective%20genetic%20algorithm%20and%20entropy%20generation%20minimization%20approaches&rft.jtitle=Heat%20and%20mass%20transfer&rft.au=Tavallaei,%20Mohsen&rft.date=2023-09-01&rft.volume=59&rft.issue=9&rft.spage=1687&rft.epage=1706&rft.pages=1687-1706&rft.issn=0947-7411&rft.eissn=1432-1181&rft_id=info:doi/10.1007/s00231-023-03363-x&rft_dat=%3Cproquest_cross%3E2859653583%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859653583&rft_id=info:pmid/&rfr_iscdi=true