Singular Integrals with Variable Kernels in Dyadic Settings
In this paper we explore conditions on variable symbols with respect to Haar systems, defining Calderón–Zygmund type operators with respect to the dyadic metrics associated to the Haar bases. We show that Petermichl’s dyadic kernel can be seen as a variable kernel singular integral and we extend it...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2023-08, Vol.39 (8), p.1565-1579 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1579 |
---|---|
container_issue | 8 |
container_start_page | 1565 |
container_title | Acta mathematica Sinica. English series |
container_volume | 39 |
creator | Aimar, Hugo Crescimbeni, Raquel Nowak, Luis |
description | In this paper we explore conditions on variable symbols with respect to Haar systems, defining Calderón–Zygmund type operators with respect to the dyadic metrics associated to the Haar bases. We show that Petermichl’s dyadic kernel can be seen as a variable kernel singular integral and we extend it to dyadic systems built on spaces of homogeneous type. |
doi_str_mv | 10.1007/s10114-023-1254-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2859653512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2859653512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-d9782b9cbe3a5f8dda4a1d88d65b8310994669d13e73127f255d0973426924833</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC52gm38GT1K9iwUPVa8husuuWuq3JFum_N8sWPHmaYXjed-BB6BLINRCibhIQAI4JZRio4JgdoQlwZrCSoI4PuxYgT9FZSitChDBETtDtsu2a3drFYt71oYlunYqftv8sPlxsXbkOxUuIXcjXtivu9863VbEMfZ9T6Ryd1JkPF4c5Re-PD2-zZ7x4fZrP7ha4olL32BulaWmqMjAnau294w681l6KUjMgxnApjQcWFAOqaiqEJ0YxTqWhXDM2RVdj7zZuvnch9Xa12cUuv7RUCyMFE0AzBSNVxU1KMdR2G9svF_cWiB0c2dGRzY7s4MgOzXTMpMx2TYh_zf-HfgFiQmck</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859653512</pqid></control><display><type>article</type><title>Singular Integrals with Variable Kernels in Dyadic Settings</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Aimar, Hugo ; Crescimbeni, Raquel ; Nowak, Luis</creator><creatorcontrib>Aimar, Hugo ; Crescimbeni, Raquel ; Nowak, Luis</creatorcontrib><description>In this paper we explore conditions on variable symbols with respect to Haar systems, defining Calderón–Zygmund type operators with respect to the dyadic metrics associated to the Haar bases. We show that Petermichl’s dyadic kernel can be seen as a variable kernel singular integral and we extend it to dyadic systems built on spaces of homogeneous type.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-023-1254-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Kernels ; Mathematics ; Mathematics and Statistics ; Operators (mathematics)</subject><ispartof>Acta mathematica Sinica. English series, 2023-08, Vol.39 (8), p.1565-1579</ispartof><rights>Springer-Verlag GmbH Germany & The Editorial Office of AMS 2023</rights><rights>Springer-Verlag GmbH Germany & The Editorial Office of AMS 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-d9782b9cbe3a5f8dda4a1d88d65b8310994669d13e73127f255d0973426924833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10114-023-1254-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10114-023-1254-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Aimar, Hugo</creatorcontrib><creatorcontrib>Crescimbeni, Raquel</creatorcontrib><creatorcontrib>Nowak, Luis</creatorcontrib><title>Singular Integrals with Variable Kernels in Dyadic Settings</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta. Math. Sin.-English Ser</addtitle><description>In this paper we explore conditions on variable symbols with respect to Haar systems, defining Calderón–Zygmund type operators with respect to the dyadic metrics associated to the Haar bases. We show that Petermichl’s dyadic kernel can be seen as a variable kernel singular integral and we extend it to dyadic systems built on spaces of homogeneous type.</description><subject>Kernels</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNuC52gm38GT1K9iwUPVa8husuuWuq3JFum_N8sWPHmaYXjed-BB6BLINRCibhIQAI4JZRio4JgdoQlwZrCSoI4PuxYgT9FZSitChDBETtDtsu2a3drFYt71oYlunYqftv8sPlxsXbkOxUuIXcjXtivu9863VbEMfZ9T6Ryd1JkPF4c5Re-PD2-zZ7x4fZrP7ha4olL32BulaWmqMjAnau294w681l6KUjMgxnApjQcWFAOqaiqEJ0YxTqWhXDM2RVdj7zZuvnch9Xa12cUuv7RUCyMFE0AzBSNVxU1KMdR2G9svF_cWiB0c2dGRzY7s4MgOzXTMpMx2TYh_zf-HfgFiQmck</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Aimar, Hugo</creator><creator>Crescimbeni, Raquel</creator><creator>Nowak, Luis</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230801</creationdate><title>Singular Integrals with Variable Kernels in Dyadic Settings</title><author>Aimar, Hugo ; Crescimbeni, Raquel ; Nowak, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-d9782b9cbe3a5f8dda4a1d88d65b8310994669d13e73127f255d0973426924833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Kernels</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aimar, Hugo</creatorcontrib><creatorcontrib>Crescimbeni, Raquel</creatorcontrib><creatorcontrib>Nowak, Luis</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aimar, Hugo</au><au>Crescimbeni, Raquel</au><au>Nowak, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singular Integrals with Variable Kernels in Dyadic Settings</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><stitle>Acta. Math. Sin.-English Ser</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>39</volume><issue>8</issue><spage>1565</spage><epage>1579</epage><pages>1565-1579</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>In this paper we explore conditions on variable symbols with respect to Haar systems, defining Calderón–Zygmund type operators with respect to the dyadic metrics associated to the Haar bases. We show that Petermichl’s dyadic kernel can be seen as a variable kernel singular integral and we extend it to dyadic systems built on spaces of homogeneous type.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10114-023-1254-3</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-8516 |
ispartof | Acta mathematica Sinica. English series, 2023-08, Vol.39 (8), p.1565-1579 |
issn | 1439-8516 1439-7617 |
language | eng |
recordid | cdi_proquest_journals_2859653512 |
source | SpringerLink Journals; Alma/SFX Local Collection |
subjects | Kernels Mathematics Mathematics and Statistics Operators (mathematics) |
title | Singular Integrals with Variable Kernels in Dyadic Settings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T09%3A46%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singular%20Integrals%20with%20Variable%20Kernels%20in%20Dyadic%20Settings&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Aimar,%20Hugo&rft.date=2023-08-01&rft.volume=39&rft.issue=8&rft.spage=1565&rft.epage=1579&rft.pages=1565-1579&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-023-1254-3&rft_dat=%3Cproquest_cross%3E2859653512%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859653512&rft_id=info:pmid/&rfr_iscdi=true |