Singular Integrals with Variable Kernels in Dyadic Settings

In this paper we explore conditions on variable symbols with respect to Haar systems, defining Calderón–Zygmund type operators with respect to the dyadic metrics associated to the Haar bases. We show that Petermichl’s dyadic kernel can be seen as a variable kernel singular integral and we extend it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2023-08, Vol.39 (8), p.1565-1579
Hauptverfasser: Aimar, Hugo, Crescimbeni, Raquel, Nowak, Luis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1579
container_issue 8
container_start_page 1565
container_title Acta mathematica Sinica. English series
container_volume 39
creator Aimar, Hugo
Crescimbeni, Raquel
Nowak, Luis
description In this paper we explore conditions on variable symbols with respect to Haar systems, defining Calderón–Zygmund type operators with respect to the dyadic metrics associated to the Haar bases. We show that Petermichl’s dyadic kernel can be seen as a variable kernel singular integral and we extend it to dyadic systems built on spaces of homogeneous type.
doi_str_mv 10.1007/s10114-023-1254-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2859653512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2859653512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-d9782b9cbe3a5f8dda4a1d88d65b8310994669d13e73127f255d0973426924833</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC52gm38GT1K9iwUPVa8husuuWuq3JFum_N8sWPHmaYXjed-BB6BLINRCibhIQAI4JZRio4JgdoQlwZrCSoI4PuxYgT9FZSitChDBETtDtsu2a3drFYt71oYlunYqftv8sPlxsXbkOxUuIXcjXtivu9863VbEMfZ9T6Ryd1JkPF4c5Re-PD2-zZ7x4fZrP7ha4olL32BulaWmqMjAnau294w681l6KUjMgxnApjQcWFAOqaiqEJ0YxTqWhXDM2RVdj7zZuvnch9Xa12cUuv7RUCyMFE0AzBSNVxU1KMdR2G9svF_cWiB0c2dGRzY7s4MgOzXTMpMx2TYh_zf-HfgFiQmck</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859653512</pqid></control><display><type>article</type><title>Singular Integrals with Variable Kernels in Dyadic Settings</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Aimar, Hugo ; Crescimbeni, Raquel ; Nowak, Luis</creator><creatorcontrib>Aimar, Hugo ; Crescimbeni, Raquel ; Nowak, Luis</creatorcontrib><description>In this paper we explore conditions on variable symbols with respect to Haar systems, defining Calderón–Zygmund type operators with respect to the dyadic metrics associated to the Haar bases. We show that Petermichl’s dyadic kernel can be seen as a variable kernel singular integral and we extend it to dyadic systems built on spaces of homogeneous type.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-023-1254-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Kernels ; Mathematics ; Mathematics and Statistics ; Operators (mathematics)</subject><ispartof>Acta mathematica Sinica. English series, 2023-08, Vol.39 (8), p.1565-1579</ispartof><rights>Springer-Verlag GmbH Germany &amp; The Editorial Office of AMS 2023</rights><rights>Springer-Verlag GmbH Germany &amp; The Editorial Office of AMS 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-d9782b9cbe3a5f8dda4a1d88d65b8310994669d13e73127f255d0973426924833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10114-023-1254-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10114-023-1254-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Aimar, Hugo</creatorcontrib><creatorcontrib>Crescimbeni, Raquel</creatorcontrib><creatorcontrib>Nowak, Luis</creatorcontrib><title>Singular Integrals with Variable Kernels in Dyadic Settings</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta. Math. Sin.-English Ser</addtitle><description>In this paper we explore conditions on variable symbols with respect to Haar systems, defining Calderón–Zygmund type operators with respect to the dyadic metrics associated to the Haar bases. We show that Petermichl’s dyadic kernel can be seen as a variable kernel singular integral and we extend it to dyadic systems built on spaces of homogeneous type.</description><subject>Kernels</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNuC52gm38GT1K9iwUPVa8husuuWuq3JFum_N8sWPHmaYXjed-BB6BLINRCibhIQAI4JZRio4JgdoQlwZrCSoI4PuxYgT9FZSitChDBETtDtsu2a3drFYt71oYlunYqftv8sPlxsXbkOxUuIXcjXtivu9863VbEMfZ9T6Ryd1JkPF4c5Re-PD2-zZ7x4fZrP7ha4olL32BulaWmqMjAnau294w681l6KUjMgxnApjQcWFAOqaiqEJ0YxTqWhXDM2RVdj7zZuvnch9Xa12cUuv7RUCyMFE0AzBSNVxU1KMdR2G9svF_cWiB0c2dGRzY7s4MgOzXTMpMx2TYh_zf-HfgFiQmck</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Aimar, Hugo</creator><creator>Crescimbeni, Raquel</creator><creator>Nowak, Luis</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230801</creationdate><title>Singular Integrals with Variable Kernels in Dyadic Settings</title><author>Aimar, Hugo ; Crescimbeni, Raquel ; Nowak, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-d9782b9cbe3a5f8dda4a1d88d65b8310994669d13e73127f255d0973426924833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Kernels</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aimar, Hugo</creatorcontrib><creatorcontrib>Crescimbeni, Raquel</creatorcontrib><creatorcontrib>Nowak, Luis</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aimar, Hugo</au><au>Crescimbeni, Raquel</au><au>Nowak, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singular Integrals with Variable Kernels in Dyadic Settings</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><stitle>Acta. Math. Sin.-English Ser</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>39</volume><issue>8</issue><spage>1565</spage><epage>1579</epage><pages>1565-1579</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>In this paper we explore conditions on variable symbols with respect to Haar systems, defining Calderón–Zygmund type operators with respect to the dyadic metrics associated to the Haar bases. We show that Petermichl’s dyadic kernel can be seen as a variable kernel singular integral and we extend it to dyadic systems built on spaces of homogeneous type.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10114-023-1254-3</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1439-8516
ispartof Acta mathematica Sinica. English series, 2023-08, Vol.39 (8), p.1565-1579
issn 1439-8516
1439-7617
language eng
recordid cdi_proquest_journals_2859653512
source SpringerLink Journals; Alma/SFX Local Collection
subjects Kernels
Mathematics
Mathematics and Statistics
Operators (mathematics)
title Singular Integrals with Variable Kernels in Dyadic Settings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T09%3A46%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singular%20Integrals%20with%20Variable%20Kernels%20in%20Dyadic%20Settings&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Aimar,%20Hugo&rft.date=2023-08-01&rft.volume=39&rft.issue=8&rft.spage=1565&rft.epage=1579&rft.pages=1565-1579&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-023-1254-3&rft_dat=%3Cproquest_cross%3E2859653512%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859653512&rft_id=info:pmid/&rfr_iscdi=true