PeleC: An adaptive mesh refinement solver for compressible reacting flows
Reacting flow simulations for combustion applications require extensive computing capabilities. Leveraging the AMReX library, the Pele suite of combustion simulation tools targets the largest supercomputers available and future exascale machines. We introduce PeleC, the compressible solver in the Pe...
Gespeichert in:
Veröffentlicht in: | The international journal of high performance computing applications 2023-03, Vol.37 (2), p.115-131 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 131 |
---|---|
container_issue | 2 |
container_start_page | 115 |
container_title | The international journal of high performance computing applications |
container_volume | 37 |
creator | Henry de Frahan, Marc T Rood, Jon S Day, Marc S Sitaraman, Hariswaran Yellapantula, Shashank Perry, Bruce A Grout, Ray W Almgren, Ann Zhang, Weiqun Bell, John B Chen, Jacqueline H |
description | Reacting flow simulations for combustion applications require extensive computing capabilities. Leveraging the AMReX library, the Pele suite of combustion simulation tools targets the largest supercomputers available and future exascale machines. We introduce PeleC, the compressible solver in the Pele suite, and detail its capabilities, including complex geometry representation, chemistry integration, and discretization. We present a comparison of development efforts using both OpenACC and AMReX’s C++ performance portability framework for execution on multiple GPU architectures. We discuss relevant details that have allowed PeleC to achieve high performance and scalability. PeleC’s performance characteristics are measured through relevant simulations on multiple supercomputers. The success of PeleC’s design for exascale is exhibited through demonstration of a 160 billion cell simulation and weak scaling onto 100% of Summit, an NVIDIA-based GPU supercomputer at Oak Ridge National Laboratory. Our results provide confidence that PeleC will enable future combustion science simulations with unprecedented fidelity. |
doi_str_mv | 10.1177/10943420221121151 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2859556000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_10943420221121151</sage_id><sourcerecordid>2859556000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-f8cb05d2ed4eeb543289ce794505e957f83aa72e37ef9c054d74ddb3dfb4c4803</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz13z2bTelsWPhQU96LmkyWTt0jY16a74781SwYMIAzMwzzvD-yJ0TcmCUqVuKSkFF4wwRmkqSU_QjCpBM1aI_DTNaZ8dgXN0EeOOEJILLmdo_QItrO7wssfa6mFsDoA7iO84gGt66KAfcfTtAQJ2PmDjuyFAjE3dQkK0GZt-i13rP-MlOnO6jXD10-fo7eH-dfWUbZ4f16vlJjNcyjFzhamJtAysAKil4KwoDahSSCKhlMoVXGvFgCtwpSFSWCWsrbl1tTCiIHyObqa7Q_Afe4hjtfP70KeXFStkKWWezCWKTpQJPsZkphpC0-nwVVFSHROr_iSWNItJE_UWfq_-L_gGLSRqrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859556000</pqid></control><display><type>article</type><title>PeleC: An adaptive mesh refinement solver for compressible reacting flows</title><source>SAGE Complete A-Z List</source><source>Alma/SFX Local Collection</source><creator>Henry de Frahan, Marc T ; Rood, Jon S ; Day, Marc S ; Sitaraman, Hariswaran ; Yellapantula, Shashank ; Perry, Bruce A ; Grout, Ray W ; Almgren, Ann ; Zhang, Weiqun ; Bell, John B ; Chen, Jacqueline H</creator><creatorcontrib>Henry de Frahan, Marc T ; Rood, Jon S ; Day, Marc S ; Sitaraman, Hariswaran ; Yellapantula, Shashank ; Perry, Bruce A ; Grout, Ray W ; Almgren, Ann ; Zhang, Weiqun ; Bell, John B ; Chen, Jacqueline H</creatorcontrib><description>Reacting flow simulations for combustion applications require extensive computing capabilities. Leveraging the AMReX library, the Pele suite of combustion simulation tools targets the largest supercomputers available and future exascale machines. We introduce PeleC, the compressible solver in the Pele suite, and detail its capabilities, including complex geometry representation, chemistry integration, and discretization. We present a comparison of development efforts using both OpenACC and AMReX’s C++ performance portability framework for execution on multiple GPU architectures. We discuss relevant details that have allowed PeleC to achieve high performance and scalability. PeleC’s performance characteristics are measured through relevant simulations on multiple supercomputers. The success of PeleC’s design for exascale is exhibited through demonstration of a 160 billion cell simulation and weak scaling onto 100% of Summit, an NVIDIA-based GPU supercomputer at Oak Ridge National Laboratory. Our results provide confidence that PeleC will enable future combustion science simulations with unprecedented fidelity.</description><identifier>ISSN: 1094-3420</identifier><identifier>EISSN: 1741-2846</identifier><identifier>DOI: 10.1177/10943420221121151</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Combustion ; Compressibility ; Compressible flow ; Computational fluid dynamics ; Finite element method ; Flow simulation ; Graphics processing units ; Grid refinement (mathematics) ; High performance computing ; Reacting flow ; Research facilities ; Solvers ; Supercomputers</subject><ispartof>The international journal of high performance computing applications, 2023-03, Vol.37 (2), p.115-131</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-f8cb05d2ed4eeb543289ce794505e957f83aa72e37ef9c054d74ddb3dfb4c4803</citedby><cites>FETCH-LOGICAL-c355t-f8cb05d2ed4eeb543289ce794505e957f83aa72e37ef9c054d74ddb3dfb4c4803</cites><orcidid>0000-0001-7742-1565 ; 0000-0003-2103-312X ; 0000-0001-8092-1974 ; 0000-0002-5749-334X ; 0000-0002-7513-3225 ; 0000-0002-9150-8103</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/10943420221121151$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/10943420221121151$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Henry de Frahan, Marc T</creatorcontrib><creatorcontrib>Rood, Jon S</creatorcontrib><creatorcontrib>Day, Marc S</creatorcontrib><creatorcontrib>Sitaraman, Hariswaran</creatorcontrib><creatorcontrib>Yellapantula, Shashank</creatorcontrib><creatorcontrib>Perry, Bruce A</creatorcontrib><creatorcontrib>Grout, Ray W</creatorcontrib><creatorcontrib>Almgren, Ann</creatorcontrib><creatorcontrib>Zhang, Weiqun</creatorcontrib><creatorcontrib>Bell, John B</creatorcontrib><creatorcontrib>Chen, Jacqueline H</creatorcontrib><title>PeleC: An adaptive mesh refinement solver for compressible reacting flows</title><title>The international journal of high performance computing applications</title><description>Reacting flow simulations for combustion applications require extensive computing capabilities. Leveraging the AMReX library, the Pele suite of combustion simulation tools targets the largest supercomputers available and future exascale machines. We introduce PeleC, the compressible solver in the Pele suite, and detail its capabilities, including complex geometry representation, chemistry integration, and discretization. We present a comparison of development efforts using both OpenACC and AMReX’s C++ performance portability framework for execution on multiple GPU architectures. We discuss relevant details that have allowed PeleC to achieve high performance and scalability. PeleC’s performance characteristics are measured through relevant simulations on multiple supercomputers. The success of PeleC’s design for exascale is exhibited through demonstration of a 160 billion cell simulation and weak scaling onto 100% of Summit, an NVIDIA-based GPU supercomputer at Oak Ridge National Laboratory. Our results provide confidence that PeleC will enable future combustion science simulations with unprecedented fidelity.</description><subject>Combustion</subject><subject>Compressibility</subject><subject>Compressible flow</subject><subject>Computational fluid dynamics</subject><subject>Finite element method</subject><subject>Flow simulation</subject><subject>Graphics processing units</subject><subject>Grid refinement (mathematics)</subject><subject>High performance computing</subject><subject>Reacting flow</subject><subject>Research facilities</subject><subject>Solvers</subject><subject>Supercomputers</subject><issn>1094-3420</issn><issn>1741-2846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz13z2bTelsWPhQU96LmkyWTt0jY16a74781SwYMIAzMwzzvD-yJ0TcmCUqVuKSkFF4wwRmkqSU_QjCpBM1aI_DTNaZ8dgXN0EeOOEJILLmdo_QItrO7wssfa6mFsDoA7iO84gGt66KAfcfTtAQJ2PmDjuyFAjE3dQkK0GZt-i13rP-MlOnO6jXD10-fo7eH-dfWUbZ4f16vlJjNcyjFzhamJtAysAKil4KwoDahSSCKhlMoVXGvFgCtwpSFSWCWsrbl1tTCiIHyObqa7Q_Afe4hjtfP70KeXFStkKWWezCWKTpQJPsZkphpC0-nwVVFSHROr_iSWNItJE_UWfq_-L_gGLSRqrA</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Henry de Frahan, Marc T</creator><creator>Rood, Jon S</creator><creator>Day, Marc S</creator><creator>Sitaraman, Hariswaran</creator><creator>Yellapantula, Shashank</creator><creator>Perry, Bruce A</creator><creator>Grout, Ray W</creator><creator>Almgren, Ann</creator><creator>Zhang, Weiqun</creator><creator>Bell, John B</creator><creator>Chen, Jacqueline H</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7742-1565</orcidid><orcidid>https://orcid.org/0000-0003-2103-312X</orcidid><orcidid>https://orcid.org/0000-0001-8092-1974</orcidid><orcidid>https://orcid.org/0000-0002-5749-334X</orcidid><orcidid>https://orcid.org/0000-0002-7513-3225</orcidid><orcidid>https://orcid.org/0000-0002-9150-8103</orcidid></search><sort><creationdate>202303</creationdate><title>PeleC: An adaptive mesh refinement solver for compressible reacting flows</title><author>Henry de Frahan, Marc T ; Rood, Jon S ; Day, Marc S ; Sitaraman, Hariswaran ; Yellapantula, Shashank ; Perry, Bruce A ; Grout, Ray W ; Almgren, Ann ; Zhang, Weiqun ; Bell, John B ; Chen, Jacqueline H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-f8cb05d2ed4eeb543289ce794505e957f83aa72e37ef9c054d74ddb3dfb4c4803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Combustion</topic><topic>Compressibility</topic><topic>Compressible flow</topic><topic>Computational fluid dynamics</topic><topic>Finite element method</topic><topic>Flow simulation</topic><topic>Graphics processing units</topic><topic>Grid refinement (mathematics)</topic><topic>High performance computing</topic><topic>Reacting flow</topic><topic>Research facilities</topic><topic>Solvers</topic><topic>Supercomputers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henry de Frahan, Marc T</creatorcontrib><creatorcontrib>Rood, Jon S</creatorcontrib><creatorcontrib>Day, Marc S</creatorcontrib><creatorcontrib>Sitaraman, Hariswaran</creatorcontrib><creatorcontrib>Yellapantula, Shashank</creatorcontrib><creatorcontrib>Perry, Bruce A</creatorcontrib><creatorcontrib>Grout, Ray W</creatorcontrib><creatorcontrib>Almgren, Ann</creatorcontrib><creatorcontrib>Zhang, Weiqun</creatorcontrib><creatorcontrib>Bell, John B</creatorcontrib><creatorcontrib>Chen, Jacqueline H</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The international journal of high performance computing applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henry de Frahan, Marc T</au><au>Rood, Jon S</au><au>Day, Marc S</au><au>Sitaraman, Hariswaran</au><au>Yellapantula, Shashank</au><au>Perry, Bruce A</au><au>Grout, Ray W</au><au>Almgren, Ann</au><au>Zhang, Weiqun</au><au>Bell, John B</au><au>Chen, Jacqueline H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PeleC: An adaptive mesh refinement solver for compressible reacting flows</atitle><jtitle>The international journal of high performance computing applications</jtitle><date>2023-03</date><risdate>2023</risdate><volume>37</volume><issue>2</issue><spage>115</spage><epage>131</epage><pages>115-131</pages><issn>1094-3420</issn><eissn>1741-2846</eissn><abstract>Reacting flow simulations for combustion applications require extensive computing capabilities. Leveraging the AMReX library, the Pele suite of combustion simulation tools targets the largest supercomputers available and future exascale machines. We introduce PeleC, the compressible solver in the Pele suite, and detail its capabilities, including complex geometry representation, chemistry integration, and discretization. We present a comparison of development efforts using both OpenACC and AMReX’s C++ performance portability framework for execution on multiple GPU architectures. We discuss relevant details that have allowed PeleC to achieve high performance and scalability. PeleC’s performance characteristics are measured through relevant simulations on multiple supercomputers. The success of PeleC’s design for exascale is exhibited through demonstration of a 160 billion cell simulation and weak scaling onto 100% of Summit, an NVIDIA-based GPU supercomputer at Oak Ridge National Laboratory. Our results provide confidence that PeleC will enable future combustion science simulations with unprecedented fidelity.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/10943420221121151</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7742-1565</orcidid><orcidid>https://orcid.org/0000-0003-2103-312X</orcidid><orcidid>https://orcid.org/0000-0001-8092-1974</orcidid><orcidid>https://orcid.org/0000-0002-5749-334X</orcidid><orcidid>https://orcid.org/0000-0002-7513-3225</orcidid><orcidid>https://orcid.org/0000-0002-9150-8103</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-3420 |
ispartof | The international journal of high performance computing applications, 2023-03, Vol.37 (2), p.115-131 |
issn | 1094-3420 1741-2846 |
language | eng |
recordid | cdi_proquest_journals_2859556000 |
source | SAGE Complete A-Z List; Alma/SFX Local Collection |
subjects | Combustion Compressibility Compressible flow Computational fluid dynamics Finite element method Flow simulation Graphics processing units Grid refinement (mathematics) High performance computing Reacting flow Research facilities Solvers Supercomputers |
title | PeleC: An adaptive mesh refinement solver for compressible reacting flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A00%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PeleC:%20An%20adaptive%20mesh%20refinement%20solver%20for%20compressible%20reacting%20flows&rft.jtitle=The%20international%20journal%20of%20high%20performance%20computing%20applications&rft.au=Henry%20de%20Frahan,%20Marc%20T&rft.date=2023-03&rft.volume=37&rft.issue=2&rft.spage=115&rft.epage=131&rft.pages=115-131&rft.issn=1094-3420&rft.eissn=1741-2846&rft_id=info:doi/10.1177/10943420221121151&rft_dat=%3Cproquest_cross%3E2859556000%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859556000&rft_id=info:pmid/&rft_sage_id=10.1177_10943420221121151&rfr_iscdi=true |