PeleC: An adaptive mesh refinement solver for compressible reacting flows

Reacting flow simulations for combustion applications require extensive computing capabilities. Leveraging the AMReX library, the Pele suite of combustion simulation tools targets the largest supercomputers available and future exascale machines. We introduce PeleC, the compressible solver in the Pe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The international journal of high performance computing applications 2023-03, Vol.37 (2), p.115-131
Hauptverfasser: Henry de Frahan, Marc T, Rood, Jon S, Day, Marc S, Sitaraman, Hariswaran, Yellapantula, Shashank, Perry, Bruce A, Grout, Ray W, Almgren, Ann, Zhang, Weiqun, Bell, John B, Chen, Jacqueline H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reacting flow simulations for combustion applications require extensive computing capabilities. Leveraging the AMReX library, the Pele suite of combustion simulation tools targets the largest supercomputers available and future exascale machines. We introduce PeleC, the compressible solver in the Pele suite, and detail its capabilities, including complex geometry representation, chemistry integration, and discretization. We present a comparison of development efforts using both OpenACC and AMReX’s C++ performance portability framework for execution on multiple GPU architectures. We discuss relevant details that have allowed PeleC to achieve high performance and scalability. PeleC’s performance characteristics are measured through relevant simulations on multiple supercomputers. The success of PeleC’s design for exascale is exhibited through demonstration of a 160 billion cell simulation and weak scaling onto 100% of Summit, an NVIDIA-based GPU supercomputer at Oak Ridge National Laboratory. Our results provide confidence that PeleC will enable future combustion science simulations with unprecedented fidelity.
ISSN:1094-3420
1741-2846
DOI:10.1177/10943420221121151