Interface between picosecond and nanosecond quantum light pulses

Light is a key information carrier, enabling worldwide, high-speed data transmission through a telecommunication fibre network. This information-carrying capacity can be extended to transmitting quantum information (QI) by encoding it in single photons—flying qubits. However, the various QI-processi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2023-09, Vol.17 (9), p.761-766
Hauptverfasser: Sośnicki, Filip, Mikołajczyk, Michał, Golestani, Ali, Karpiński, Michał
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 766
container_issue 9
container_start_page 761
container_title Nature photonics
container_volume 17
creator Sośnicki, Filip
Mikołajczyk, Michał
Golestani, Ali
Karpiński, Michał
description Light is a key information carrier, enabling worldwide, high-speed data transmission through a telecommunication fibre network. This information-carrying capacity can be extended to transmitting quantum information (QI) by encoding it in single photons—flying qubits. However, the various QI-processing platforms operate at vastly different timescales. QI-processing units in atomic media, operating within nanosecond to microsecond timescales, and high-speed quantum communication, at picosecond timescales, cannot be linked efficiently because of the orders-of-magnitude mismatch in the timescales or, correspondingly, spectral linewidths. Here we develop a large-aperture time lens using wide-bandwidth electro-optic phase modulation to bridge this gap. We demonstrate coherent, deterministic spectral bandwidth compression of quantum light pulses by more than two orders of magnitude with high efficiency. This will facilitate large-scale hybrid QI-processing by linking the ultrafast and quasi-continuous-wave experimental platforms, which until now, to a large extent, have been developing independently. To bridge the ultrafast and slow classes of quantum-information-processing systems, a Fresnel time lens is developed by using a wideband electro-optic phase modulator combined with a dispersion element. The single-photon spectral bandwidth is compressed from picosecond to nanosecond timescales.
doi_str_mv 10.1038/s41566-023-01214-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2859393385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2859393385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-40c27eae530f54f6753b891358331774e09e2a866c24c9329b96cd32fe19e7293</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC52iSSXaTm1K0Fgpe9BzSdLa2tNltsovYT290_XPzMMwbeO8N_Ai55OyaM9A3SXJVlpQJoIwLLunhiIx4JQ2V2sDxr9bqlJyltGFMgRFiRG5nocNYO4_FArs3xFC0a98k9E1YFi5PcOHn3PcudP2u2K5Xr13R9tuE6Zyc1C6Li-89Ji8P98-TRzp_ms4md3PqgZuOSuZFhQ4VsFrJuqwULLThoDQAryqJzKBwuiy9kN6AMAtT-iWIGrnBShgYk6uht43NvsfU2U3Tx5BfWqGVAQOgVXaJweVjk1LE2rZxvXPx3XJmP0nZgZTNpOwXKXvIIRhCKZvDCuNf9T-pDzxXa20</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859393385</pqid></control><display><type>article</type><title>Interface between picosecond and nanosecond quantum light pulses</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Sośnicki, Filip ; Mikołajczyk, Michał ; Golestani, Ali ; Karpiński, Michał</creator><creatorcontrib>Sośnicki, Filip ; Mikołajczyk, Michał ; Golestani, Ali ; Karpiński, Michał</creatorcontrib><description>Light is a key information carrier, enabling worldwide, high-speed data transmission through a telecommunication fibre network. This information-carrying capacity can be extended to transmitting quantum information (QI) by encoding it in single photons—flying qubits. However, the various QI-processing platforms operate at vastly different timescales. QI-processing units in atomic media, operating within nanosecond to microsecond timescales, and high-speed quantum communication, at picosecond timescales, cannot be linked efficiently because of the orders-of-magnitude mismatch in the timescales or, correspondingly, spectral linewidths. Here we develop a large-aperture time lens using wide-bandwidth electro-optic phase modulation to bridge this gap. We demonstrate coherent, deterministic spectral bandwidth compression of quantum light pulses by more than two orders of magnitude with high efficiency. This will facilitate large-scale hybrid QI-processing by linking the ultrafast and quasi-continuous-wave experimental platforms, which until now, to a large extent, have been developing independently. To bridge the ultrafast and slow classes of quantum-information-processing systems, a Fresnel time lens is developed by using a wideband electro-optic phase modulator combined with a dispersion element. The single-photon spectral bandwidth is compressed from picosecond to nanosecond timescales.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-023-01214-z</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/187 ; 639/624/400/482 ; 639/624/400/584 ; Applied and Technical Physics ; Bandwidths ; Carrying capacity ; Continuous radiation ; Data transmission ; High speed ; Information processing ; Lenses ; Phase modulation ; Photons ; Physics ; Physics and Astronomy ; Platforms ; Quantum phenomena ; Quantum Physics ; Qubits (quantum computing)</subject><ispartof>Nature photonics, 2023-09, Vol.17 (9), p.761-766</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-40c27eae530f54f6753b891358331774e09e2a866c24c9329b96cd32fe19e7293</citedby><cites>FETCH-LOGICAL-c319t-40c27eae530f54f6753b891358331774e09e2a866c24c9329b96cd32fe19e7293</cites><orcidid>0000-0002-7036-1456 ; 0000-0001-8195-214X ; 0000-0002-2465-4645 ; 0000-0003-0424-235X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-023-01214-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-023-01214-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sośnicki, Filip</creatorcontrib><creatorcontrib>Mikołajczyk, Michał</creatorcontrib><creatorcontrib>Golestani, Ali</creatorcontrib><creatorcontrib>Karpiński, Michał</creatorcontrib><title>Interface between picosecond and nanosecond quantum light pulses</title><title>Nature photonics</title><addtitle>Nat. Photon</addtitle><description>Light is a key information carrier, enabling worldwide, high-speed data transmission through a telecommunication fibre network. This information-carrying capacity can be extended to transmitting quantum information (QI) by encoding it in single photons—flying qubits. However, the various QI-processing platforms operate at vastly different timescales. QI-processing units in atomic media, operating within nanosecond to microsecond timescales, and high-speed quantum communication, at picosecond timescales, cannot be linked efficiently because of the orders-of-magnitude mismatch in the timescales or, correspondingly, spectral linewidths. Here we develop a large-aperture time lens using wide-bandwidth electro-optic phase modulation to bridge this gap. We demonstrate coherent, deterministic spectral bandwidth compression of quantum light pulses by more than two orders of magnitude with high efficiency. This will facilitate large-scale hybrid QI-processing by linking the ultrafast and quasi-continuous-wave experimental platforms, which until now, to a large extent, have been developing independently. To bridge the ultrafast and slow classes of quantum-information-processing systems, a Fresnel time lens is developed by using a wideband electro-optic phase modulator combined with a dispersion element. The single-photon spectral bandwidth is compressed from picosecond to nanosecond timescales.</description><subject>639/624/1075/187</subject><subject>639/624/400/482</subject><subject>639/624/400/584</subject><subject>Applied and Technical Physics</subject><subject>Bandwidths</subject><subject>Carrying capacity</subject><subject>Continuous radiation</subject><subject>Data transmission</subject><subject>High speed</subject><subject>Information processing</subject><subject>Lenses</subject><subject>Phase modulation</subject><subject>Photons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Platforms</subject><subject>Quantum phenomena</subject><subject>Quantum Physics</subject><subject>Qubits (quantum computing)</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwNOC52iSSXaTm1K0Fgpe9BzSdLa2tNltsovYT290_XPzMMwbeO8N_Ai55OyaM9A3SXJVlpQJoIwLLunhiIx4JQ2V2sDxr9bqlJyltGFMgRFiRG5nocNYO4_FArs3xFC0a98k9E1YFi5PcOHn3PcudP2u2K5Xr13R9tuE6Zyc1C6Li-89Ji8P98-TRzp_ms4md3PqgZuOSuZFhQ4VsFrJuqwULLThoDQAryqJzKBwuiy9kN6AMAtT-iWIGrnBShgYk6uht43NvsfU2U3Tx5BfWqGVAQOgVXaJweVjk1LE2rZxvXPx3XJmP0nZgZTNpOwXKXvIIRhCKZvDCuNf9T-pDzxXa20</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Sośnicki, Filip</creator><creator>Mikołajczyk, Michał</creator><creator>Golestani, Ali</creator><creator>Karpiński, Michał</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-7036-1456</orcidid><orcidid>https://orcid.org/0000-0001-8195-214X</orcidid><orcidid>https://orcid.org/0000-0002-2465-4645</orcidid><orcidid>https://orcid.org/0000-0003-0424-235X</orcidid></search><sort><creationdate>20230901</creationdate><title>Interface between picosecond and nanosecond quantum light pulses</title><author>Sośnicki, Filip ; Mikołajczyk, Michał ; Golestani, Ali ; Karpiński, Michał</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-40c27eae530f54f6753b891358331774e09e2a866c24c9329b96cd32fe19e7293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/624/1075/187</topic><topic>639/624/400/482</topic><topic>639/624/400/584</topic><topic>Applied and Technical Physics</topic><topic>Bandwidths</topic><topic>Carrying capacity</topic><topic>Continuous radiation</topic><topic>Data transmission</topic><topic>High speed</topic><topic>Information processing</topic><topic>Lenses</topic><topic>Phase modulation</topic><topic>Photons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Platforms</topic><topic>Quantum phenomena</topic><topic>Quantum Physics</topic><topic>Qubits (quantum computing)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sośnicki, Filip</creatorcontrib><creatorcontrib>Mikołajczyk, Michał</creatorcontrib><creatorcontrib>Golestani, Ali</creatorcontrib><creatorcontrib>Karpiński, Michał</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sośnicki, Filip</au><au>Mikołajczyk, Michał</au><au>Golestani, Ali</au><au>Karpiński, Michał</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface between picosecond and nanosecond quantum light pulses</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photon</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>17</volume><issue>9</issue><spage>761</spage><epage>766</epage><pages>761-766</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Light is a key information carrier, enabling worldwide, high-speed data transmission through a telecommunication fibre network. This information-carrying capacity can be extended to transmitting quantum information (QI) by encoding it in single photons—flying qubits. However, the various QI-processing platforms operate at vastly different timescales. QI-processing units in atomic media, operating within nanosecond to microsecond timescales, and high-speed quantum communication, at picosecond timescales, cannot be linked efficiently because of the orders-of-magnitude mismatch in the timescales or, correspondingly, spectral linewidths. Here we develop a large-aperture time lens using wide-bandwidth electro-optic phase modulation to bridge this gap. We demonstrate coherent, deterministic spectral bandwidth compression of quantum light pulses by more than two orders of magnitude with high efficiency. This will facilitate large-scale hybrid QI-processing by linking the ultrafast and quasi-continuous-wave experimental platforms, which until now, to a large extent, have been developing independently. To bridge the ultrafast and slow classes of quantum-information-processing systems, a Fresnel time lens is developed by using a wideband electro-optic phase modulator combined with a dispersion element. The single-photon spectral bandwidth is compressed from picosecond to nanosecond timescales.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-023-01214-z</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7036-1456</orcidid><orcidid>https://orcid.org/0000-0001-8195-214X</orcidid><orcidid>https://orcid.org/0000-0002-2465-4645</orcidid><orcidid>https://orcid.org/0000-0003-0424-235X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2023-09, Vol.17 (9), p.761-766
issn 1749-4885
1749-4893
language eng
recordid cdi_proquest_journals_2859393385
source SpringerLink Journals; Nature Journals Online
subjects 639/624/1075/187
639/624/400/482
639/624/400/584
Applied and Technical Physics
Bandwidths
Carrying capacity
Continuous radiation
Data transmission
High speed
Information processing
Lenses
Phase modulation
Photons
Physics
Physics and Astronomy
Platforms
Quantum phenomena
Quantum Physics
Qubits (quantum computing)
title Interface between picosecond and nanosecond quantum light pulses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A48%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface%20between%20picosecond%20and%20nanosecond%20quantum%20light%20pulses&rft.jtitle=Nature%20photonics&rft.au=So%C5%9Bnicki,%20Filip&rft.date=2023-09-01&rft.volume=17&rft.issue=9&rft.spage=761&rft.epage=766&rft.pages=761-766&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-023-01214-z&rft_dat=%3Cproquest_cross%3E2859393385%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859393385&rft_id=info:pmid/&rfr_iscdi=true