Interface between picosecond and nanosecond quantum light pulses
Light is a key information carrier, enabling worldwide, high-speed data transmission through a telecommunication fibre network. This information-carrying capacity can be extended to transmitting quantum information (QI) by encoding it in single photons—flying qubits. However, the various QI-processi...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2023-09, Vol.17 (9), p.761-766 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 766 |
---|---|
container_issue | 9 |
container_start_page | 761 |
container_title | Nature photonics |
container_volume | 17 |
creator | Sośnicki, Filip Mikołajczyk, Michał Golestani, Ali Karpiński, Michał |
description | Light is a key information carrier, enabling worldwide, high-speed data transmission through a telecommunication fibre network. This information-carrying capacity can be extended to transmitting quantum information (QI) by encoding it in single photons—flying qubits. However, the various QI-processing platforms operate at vastly different timescales. QI-processing units in atomic media, operating within nanosecond to microsecond timescales, and high-speed quantum communication, at picosecond timescales, cannot be linked efficiently because of the orders-of-magnitude mismatch in the timescales or, correspondingly, spectral linewidths. Here we develop a large-aperture time lens using wide-bandwidth electro-optic phase modulation to bridge this gap. We demonstrate coherent, deterministic spectral bandwidth compression of quantum light pulses by more than two orders of magnitude with high efficiency. This will facilitate large-scale hybrid QI-processing by linking the ultrafast and quasi-continuous-wave experimental platforms, which until now, to a large extent, have been developing independently.
To bridge the ultrafast and slow classes of quantum-information-processing systems, a Fresnel time lens is developed by using a wideband electro-optic phase modulator combined with a dispersion element. The single-photon spectral bandwidth is compressed from picosecond to nanosecond timescales. |
doi_str_mv | 10.1038/s41566-023-01214-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2859393385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2859393385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-40c27eae530f54f6753b891358331774e09e2a866c24c9329b96cd32fe19e7293</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC52iSSXaTm1K0Fgpe9BzSdLa2tNltsovYT290_XPzMMwbeO8N_Ai55OyaM9A3SXJVlpQJoIwLLunhiIx4JQ2V2sDxr9bqlJyltGFMgRFiRG5nocNYO4_FArs3xFC0a98k9E1YFi5PcOHn3PcudP2u2K5Xr13R9tuE6Zyc1C6Li-89Ji8P98-TRzp_ms4md3PqgZuOSuZFhQ4VsFrJuqwULLThoDQAryqJzKBwuiy9kN6AMAtT-iWIGrnBShgYk6uht43NvsfU2U3Tx5BfWqGVAQOgVXaJweVjk1LE2rZxvXPx3XJmP0nZgZTNpOwXKXvIIRhCKZvDCuNf9T-pDzxXa20</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859393385</pqid></control><display><type>article</type><title>Interface between picosecond and nanosecond quantum light pulses</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Sośnicki, Filip ; Mikołajczyk, Michał ; Golestani, Ali ; Karpiński, Michał</creator><creatorcontrib>Sośnicki, Filip ; Mikołajczyk, Michał ; Golestani, Ali ; Karpiński, Michał</creatorcontrib><description>Light is a key information carrier, enabling worldwide, high-speed data transmission through a telecommunication fibre network. This information-carrying capacity can be extended to transmitting quantum information (QI) by encoding it in single photons—flying qubits. However, the various QI-processing platforms operate at vastly different timescales. QI-processing units in atomic media, operating within nanosecond to microsecond timescales, and high-speed quantum communication, at picosecond timescales, cannot be linked efficiently because of the orders-of-magnitude mismatch in the timescales or, correspondingly, spectral linewidths. Here we develop a large-aperture time lens using wide-bandwidth electro-optic phase modulation to bridge this gap. We demonstrate coherent, deterministic spectral bandwidth compression of quantum light pulses by more than two orders of magnitude with high efficiency. This will facilitate large-scale hybrid QI-processing by linking the ultrafast and quasi-continuous-wave experimental platforms, which until now, to a large extent, have been developing independently.
To bridge the ultrafast and slow classes of quantum-information-processing systems, a Fresnel time lens is developed by using a wideband electro-optic phase modulator combined with a dispersion element. The single-photon spectral bandwidth is compressed from picosecond to nanosecond timescales.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-023-01214-z</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/187 ; 639/624/400/482 ; 639/624/400/584 ; Applied and Technical Physics ; Bandwidths ; Carrying capacity ; Continuous radiation ; Data transmission ; High speed ; Information processing ; Lenses ; Phase modulation ; Photons ; Physics ; Physics and Astronomy ; Platforms ; Quantum phenomena ; Quantum Physics ; Qubits (quantum computing)</subject><ispartof>Nature photonics, 2023-09, Vol.17 (9), p.761-766</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-40c27eae530f54f6753b891358331774e09e2a866c24c9329b96cd32fe19e7293</citedby><cites>FETCH-LOGICAL-c319t-40c27eae530f54f6753b891358331774e09e2a866c24c9329b96cd32fe19e7293</cites><orcidid>0000-0002-7036-1456 ; 0000-0001-8195-214X ; 0000-0002-2465-4645 ; 0000-0003-0424-235X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-023-01214-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-023-01214-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sośnicki, Filip</creatorcontrib><creatorcontrib>Mikołajczyk, Michał</creatorcontrib><creatorcontrib>Golestani, Ali</creatorcontrib><creatorcontrib>Karpiński, Michał</creatorcontrib><title>Interface between picosecond and nanosecond quantum light pulses</title><title>Nature photonics</title><addtitle>Nat. Photon</addtitle><description>Light is a key information carrier, enabling worldwide, high-speed data transmission through a telecommunication fibre network. This information-carrying capacity can be extended to transmitting quantum information (QI) by encoding it in single photons—flying qubits. However, the various QI-processing platforms operate at vastly different timescales. QI-processing units in atomic media, operating within nanosecond to microsecond timescales, and high-speed quantum communication, at picosecond timescales, cannot be linked efficiently because of the orders-of-magnitude mismatch in the timescales or, correspondingly, spectral linewidths. Here we develop a large-aperture time lens using wide-bandwidth electro-optic phase modulation to bridge this gap. We demonstrate coherent, deterministic spectral bandwidth compression of quantum light pulses by more than two orders of magnitude with high efficiency. This will facilitate large-scale hybrid QI-processing by linking the ultrafast and quasi-continuous-wave experimental platforms, which until now, to a large extent, have been developing independently.
To bridge the ultrafast and slow classes of quantum-information-processing systems, a Fresnel time lens is developed by using a wideband electro-optic phase modulator combined with a dispersion element. The single-photon spectral bandwidth is compressed from picosecond to nanosecond timescales.</description><subject>639/624/1075/187</subject><subject>639/624/400/482</subject><subject>639/624/400/584</subject><subject>Applied and Technical Physics</subject><subject>Bandwidths</subject><subject>Carrying capacity</subject><subject>Continuous radiation</subject><subject>Data transmission</subject><subject>High speed</subject><subject>Information processing</subject><subject>Lenses</subject><subject>Phase modulation</subject><subject>Photons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Platforms</subject><subject>Quantum phenomena</subject><subject>Quantum Physics</subject><subject>Qubits (quantum computing)</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwNOC52iSSXaTm1K0Fgpe9BzSdLa2tNltsovYT290_XPzMMwbeO8N_Ai55OyaM9A3SXJVlpQJoIwLLunhiIx4JQ2V2sDxr9bqlJyltGFMgRFiRG5nocNYO4_FArs3xFC0a98k9E1YFi5PcOHn3PcudP2u2K5Xr13R9tuE6Zyc1C6Li-89Ji8P98-TRzp_ms4md3PqgZuOSuZFhQ4VsFrJuqwULLThoDQAryqJzKBwuiy9kN6AMAtT-iWIGrnBShgYk6uht43NvsfU2U3Tx5BfWqGVAQOgVXaJweVjk1LE2rZxvXPx3XJmP0nZgZTNpOwXKXvIIRhCKZvDCuNf9T-pDzxXa20</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Sośnicki, Filip</creator><creator>Mikołajczyk, Michał</creator><creator>Golestani, Ali</creator><creator>Karpiński, Michał</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-7036-1456</orcidid><orcidid>https://orcid.org/0000-0001-8195-214X</orcidid><orcidid>https://orcid.org/0000-0002-2465-4645</orcidid><orcidid>https://orcid.org/0000-0003-0424-235X</orcidid></search><sort><creationdate>20230901</creationdate><title>Interface between picosecond and nanosecond quantum light pulses</title><author>Sośnicki, Filip ; Mikołajczyk, Michał ; Golestani, Ali ; Karpiński, Michał</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-40c27eae530f54f6753b891358331774e09e2a866c24c9329b96cd32fe19e7293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/624/1075/187</topic><topic>639/624/400/482</topic><topic>639/624/400/584</topic><topic>Applied and Technical Physics</topic><topic>Bandwidths</topic><topic>Carrying capacity</topic><topic>Continuous radiation</topic><topic>Data transmission</topic><topic>High speed</topic><topic>Information processing</topic><topic>Lenses</topic><topic>Phase modulation</topic><topic>Photons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Platforms</topic><topic>Quantum phenomena</topic><topic>Quantum Physics</topic><topic>Qubits (quantum computing)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sośnicki, Filip</creatorcontrib><creatorcontrib>Mikołajczyk, Michał</creatorcontrib><creatorcontrib>Golestani, Ali</creatorcontrib><creatorcontrib>Karpiński, Michał</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sośnicki, Filip</au><au>Mikołajczyk, Michał</au><au>Golestani, Ali</au><au>Karpiński, Michał</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface between picosecond and nanosecond quantum light pulses</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photon</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>17</volume><issue>9</issue><spage>761</spage><epage>766</epage><pages>761-766</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Light is a key information carrier, enabling worldwide, high-speed data transmission through a telecommunication fibre network. This information-carrying capacity can be extended to transmitting quantum information (QI) by encoding it in single photons—flying qubits. However, the various QI-processing platforms operate at vastly different timescales. QI-processing units in atomic media, operating within nanosecond to microsecond timescales, and high-speed quantum communication, at picosecond timescales, cannot be linked efficiently because of the orders-of-magnitude mismatch in the timescales or, correspondingly, spectral linewidths. Here we develop a large-aperture time lens using wide-bandwidth electro-optic phase modulation to bridge this gap. We demonstrate coherent, deterministic spectral bandwidth compression of quantum light pulses by more than two orders of magnitude with high efficiency. This will facilitate large-scale hybrid QI-processing by linking the ultrafast and quasi-continuous-wave experimental platforms, which until now, to a large extent, have been developing independently.
To bridge the ultrafast and slow classes of quantum-information-processing systems, a Fresnel time lens is developed by using a wideband electro-optic phase modulator combined with a dispersion element. The single-photon spectral bandwidth is compressed from picosecond to nanosecond timescales.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-023-01214-z</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7036-1456</orcidid><orcidid>https://orcid.org/0000-0001-8195-214X</orcidid><orcidid>https://orcid.org/0000-0002-2465-4645</orcidid><orcidid>https://orcid.org/0000-0003-0424-235X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2023-09, Vol.17 (9), p.761-766 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_proquest_journals_2859393385 |
source | SpringerLink Journals; Nature Journals Online |
subjects | 639/624/1075/187 639/624/400/482 639/624/400/584 Applied and Technical Physics Bandwidths Carrying capacity Continuous radiation Data transmission High speed Information processing Lenses Phase modulation Photons Physics Physics and Astronomy Platforms Quantum phenomena Quantum Physics Qubits (quantum computing) |
title | Interface between picosecond and nanosecond quantum light pulses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A48%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface%20between%20picosecond%20and%20nanosecond%20quantum%20light%20pulses&rft.jtitle=Nature%20photonics&rft.au=So%C5%9Bnicki,%20Filip&rft.date=2023-09-01&rft.volume=17&rft.issue=9&rft.spage=761&rft.epage=766&rft.pages=761-766&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-023-01214-z&rft_dat=%3Cproquest_cross%3E2859393385%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859393385&rft_id=info:pmid/&rfr_iscdi=true |