Conversion of biomass into hydrogen by supercritical water gasification: a review
The rising issues of global warming due to the rapid use of fossil fuels are calling for sustainable energies such as dihydrogen, thereafter named ‘hydrogen’. The hydrogen demand has quadrupled in the past 45 years from 18 million tons in 1975 to 90 million tons in 2020 with a projected increase to...
Gespeichert in:
Veröffentlicht in: | Environmental chemistry letters 2023-10, Vol.21 (5), p.2619-2638 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2638 |
---|---|
container_issue | 5 |
container_start_page | 2619 |
container_title | Environmental chemistry letters |
container_volume | 21 |
creator | Khandelwal, Kapil Nanda, Sonil Boahene, Philip Dalai, Ajay K. |
description | The rising issues of global warming due to the rapid use of fossil fuels are calling for sustainable energies such as dihydrogen, thereafter named ‘hydrogen’. The hydrogen demand has quadrupled in the past 45 years from 18 million tons in 1975 to 90 million tons in 2020 with a projected increase to 180 million tons by 2030. Here, we review the conversion of biomass into hydrogen by supercritical water gasification into hydrogen-rich syngas, with focus on thermophysical properties of supercritical water, parameters influencing water gasification and supercritical water gasification of cellulose, hemicellulose, lignin, biomass and model compounds. Parameters influencing water gasification include temperature, pressure, feedstock concentration and reaction time. Processes influencing products distribution comprise hydrolysis, water–gas shift, methanation, hydrogenation and reforming. |
doi_str_mv | 10.1007/s10311-023-01624-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2859383274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153184037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-bd7f99f6486919bcc7c042025f0227a95b7e8a80194c43992be59d5b30fad54b3</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wFXAjZvRfM5M3EnxCwoi6DokmaSmtJOazLS0v97UEQUXrt57cO7lcQA4x-gKI1RdJ4woxgUitEC4JKzYHYARLjEqaFniw5-d02NwktIcIUIqQkbgZRLatY3JhxYGB7UPS5US9G0X4Pu2iWFmW6i3MPUrG030nTdqATeqsxHOVPIu310O30AFo117uzkFR04tkj37nmPwdn_3Onksps8PT5PbaWEoJ12hm8oJ4UpWlwILbUxlECOIcLd_TQmuK1urGmHBDKNCEG25aLimyKmGM03H4HLoXcXw0dvUyaVPxi4WqrWhT5JiTnHNEK0yevEHnYc-tvk7SWouaE1JxTJFBsrEkFK0Tq6iX6q4lRjJvWU5WJbZsvyyLHc5RIdQynA7s_G3-p_UJwWLf8U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859383274</pqid></control><display><type>article</type><title>Conversion of biomass into hydrogen by supercritical water gasification: a review</title><source>SpringerLink Journals - AutoHoldings</source><creator>Khandelwal, Kapil ; Nanda, Sonil ; Boahene, Philip ; Dalai, Ajay K.</creator><creatorcontrib>Khandelwal, Kapil ; Nanda, Sonil ; Boahene, Philip ; Dalai, Ajay K.</creatorcontrib><description>The rising issues of global warming due to the rapid use of fossil fuels are calling for sustainable energies such as dihydrogen, thereafter named ‘hydrogen’. The hydrogen demand has quadrupled in the past 45 years from 18 million tons in 1975 to 90 million tons in 2020 with a projected increase to 180 million tons by 2030. Here, we review the conversion of biomass into hydrogen by supercritical water gasification into hydrogen-rich syngas, with focus on thermophysical properties of supercritical water, parameters influencing water gasification and supercritical water gasification of cellulose, hemicellulose, lignin, biomass and model compounds. Parameters influencing water gasification include temperature, pressure, feedstock concentration and reaction time. Processes influencing products distribution comprise hydrolysis, water–gas shift, methanation, hydrogenation and reforming.</description><identifier>ISSN: 1610-3653</identifier><identifier>EISSN: 1610-3661</identifier><identifier>DOI: 10.1007/s10311-023-01624-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Alternative energy sources ; Analytical Chemistry ; Aviation ; Biodiesel fuels ; Biofuels ; Biomass ; Carbon dioxide ; Cellulose ; Chemistry ; Climate change ; Conversion ; Earth and Environmental Science ; Ecotoxicology ; Emissions ; Environment ; Environmental Chemistry ; feedstocks ; Fossil fuels ; Gasification ; Geochemistry ; Global warming ; Greenhouse gases ; Hemicellulose ; Hydrogen ; hydrogenation ; hydrolysis ; Lignin ; Lignocellulose ; Methanation ; methane production ; Moisture content ; Parameters ; Pollution ; Potassium ; Raw materials ; Reforming ; Renewable resources ; Review Article ; Synthesis gas ; temperature ; Thermophysical properties ; Water</subject><ispartof>Environmental chemistry letters, 2023-10, Vol.21 (5), p.2619-2638</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-bd7f99f6486919bcc7c042025f0227a95b7e8a80194c43992be59d5b30fad54b3</citedby><cites>FETCH-LOGICAL-c352t-bd7f99f6486919bcc7c042025f0227a95b7e8a80194c43992be59d5b30fad54b3</cites><orcidid>0000-0003-3907-6232</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10311-023-01624-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10311-023-01624-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Khandelwal, Kapil</creatorcontrib><creatorcontrib>Nanda, Sonil</creatorcontrib><creatorcontrib>Boahene, Philip</creatorcontrib><creatorcontrib>Dalai, Ajay K.</creatorcontrib><title>Conversion of biomass into hydrogen by supercritical water gasification: a review</title><title>Environmental chemistry letters</title><addtitle>Environ Chem Lett</addtitle><description>The rising issues of global warming due to the rapid use of fossil fuels are calling for sustainable energies such as dihydrogen, thereafter named ‘hydrogen’. The hydrogen demand has quadrupled in the past 45 years from 18 million tons in 1975 to 90 million tons in 2020 with a projected increase to 180 million tons by 2030. Here, we review the conversion of biomass into hydrogen by supercritical water gasification into hydrogen-rich syngas, with focus on thermophysical properties of supercritical water, parameters influencing water gasification and supercritical water gasification of cellulose, hemicellulose, lignin, biomass and model compounds. Parameters influencing water gasification include temperature, pressure, feedstock concentration and reaction time. Processes influencing products distribution comprise hydrolysis, water–gas shift, methanation, hydrogenation and reforming.</description><subject>Alternative energy sources</subject><subject>Analytical Chemistry</subject><subject>Aviation</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>Carbon dioxide</subject><subject>Cellulose</subject><subject>Chemistry</subject><subject>Climate change</subject><subject>Conversion</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Emissions</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>feedstocks</subject><subject>Fossil fuels</subject><subject>Gasification</subject><subject>Geochemistry</subject><subject>Global warming</subject><subject>Greenhouse gases</subject><subject>Hemicellulose</subject><subject>Hydrogen</subject><subject>hydrogenation</subject><subject>hydrolysis</subject><subject>Lignin</subject><subject>Lignocellulose</subject><subject>Methanation</subject><subject>methane production</subject><subject>Moisture content</subject><subject>Parameters</subject><subject>Pollution</subject><subject>Potassium</subject><subject>Raw materials</subject><subject>Reforming</subject><subject>Renewable resources</subject><subject>Review Article</subject><subject>Synthesis gas</subject><subject>temperature</subject><subject>Thermophysical properties</subject><subject>Water</subject><issn>1610-3653</issn><issn>1610-3661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEURYMoWKt_wFXAjZvRfM5M3EnxCwoi6DokmaSmtJOazLS0v97UEQUXrt57cO7lcQA4x-gKI1RdJ4woxgUitEC4JKzYHYARLjEqaFniw5-d02NwktIcIUIqQkbgZRLatY3JhxYGB7UPS5US9G0X4Pu2iWFmW6i3MPUrG030nTdqATeqsxHOVPIu310O30AFo117uzkFR04tkj37nmPwdn_3Onksps8PT5PbaWEoJ12hm8oJ4UpWlwILbUxlECOIcLd_TQmuK1urGmHBDKNCEG25aLimyKmGM03H4HLoXcXw0dvUyaVPxi4WqrWhT5JiTnHNEK0yevEHnYc-tvk7SWouaE1JxTJFBsrEkFK0Tq6iX6q4lRjJvWU5WJbZsvyyLHc5RIdQynA7s_G3-p_UJwWLf8U</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Khandelwal, Kapil</creator><creator>Nanda, Sonil</creator><creator>Boahene, Philip</creator><creator>Dalai, Ajay K.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-3907-6232</orcidid></search><sort><creationdate>20231001</creationdate><title>Conversion of biomass into hydrogen by supercritical water gasification: a review</title><author>Khandelwal, Kapil ; Nanda, Sonil ; Boahene, Philip ; Dalai, Ajay K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-bd7f99f6486919bcc7c042025f0227a95b7e8a80194c43992be59d5b30fad54b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alternative energy sources</topic><topic>Analytical Chemistry</topic><topic>Aviation</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>Carbon dioxide</topic><topic>Cellulose</topic><topic>Chemistry</topic><topic>Climate change</topic><topic>Conversion</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Emissions</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>feedstocks</topic><topic>Fossil fuels</topic><topic>Gasification</topic><topic>Geochemistry</topic><topic>Global warming</topic><topic>Greenhouse gases</topic><topic>Hemicellulose</topic><topic>Hydrogen</topic><topic>hydrogenation</topic><topic>hydrolysis</topic><topic>Lignin</topic><topic>Lignocellulose</topic><topic>Methanation</topic><topic>methane production</topic><topic>Moisture content</topic><topic>Parameters</topic><topic>Pollution</topic><topic>Potassium</topic><topic>Raw materials</topic><topic>Reforming</topic><topic>Renewable resources</topic><topic>Review Article</topic><topic>Synthesis gas</topic><topic>temperature</topic><topic>Thermophysical properties</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khandelwal, Kapil</creatorcontrib><creatorcontrib>Nanda, Sonil</creatorcontrib><creatorcontrib>Boahene, Philip</creatorcontrib><creatorcontrib>Dalai, Ajay K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khandelwal, Kapil</au><au>Nanda, Sonil</au><au>Boahene, Philip</au><au>Dalai, Ajay K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conversion of biomass into hydrogen by supercritical water gasification: a review</atitle><jtitle>Environmental chemistry letters</jtitle><stitle>Environ Chem Lett</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>21</volume><issue>5</issue><spage>2619</spage><epage>2638</epage><pages>2619-2638</pages><issn>1610-3653</issn><eissn>1610-3661</eissn><abstract>The rising issues of global warming due to the rapid use of fossil fuels are calling for sustainable energies such as dihydrogen, thereafter named ‘hydrogen’. The hydrogen demand has quadrupled in the past 45 years from 18 million tons in 1975 to 90 million tons in 2020 with a projected increase to 180 million tons by 2030. Here, we review the conversion of biomass into hydrogen by supercritical water gasification into hydrogen-rich syngas, with focus on thermophysical properties of supercritical water, parameters influencing water gasification and supercritical water gasification of cellulose, hemicellulose, lignin, biomass and model compounds. Parameters influencing water gasification include temperature, pressure, feedstock concentration and reaction time. Processes influencing products distribution comprise hydrolysis, water–gas shift, methanation, hydrogenation and reforming.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10311-023-01624-z</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3907-6232</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1610-3653 |
ispartof | Environmental chemistry letters, 2023-10, Vol.21 (5), p.2619-2638 |
issn | 1610-3653 1610-3661 |
language | eng |
recordid | cdi_proquest_journals_2859383274 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alternative energy sources Analytical Chemistry Aviation Biodiesel fuels Biofuels Biomass Carbon dioxide Cellulose Chemistry Climate change Conversion Earth and Environmental Science Ecotoxicology Emissions Environment Environmental Chemistry feedstocks Fossil fuels Gasification Geochemistry Global warming Greenhouse gases Hemicellulose Hydrogen hydrogenation hydrolysis Lignin Lignocellulose Methanation methane production Moisture content Parameters Pollution Potassium Raw materials Reforming Renewable resources Review Article Synthesis gas temperature Thermophysical properties Water |
title | Conversion of biomass into hydrogen by supercritical water gasification: a review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A42%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conversion%20of%20biomass%20into%20hydrogen%20by%20supercritical%20water%20gasification:%20a%20review&rft.jtitle=Environmental%20chemistry%20letters&rft.au=Khandelwal,%20Kapil&rft.date=2023-10-01&rft.volume=21&rft.issue=5&rft.spage=2619&rft.epage=2638&rft.pages=2619-2638&rft.issn=1610-3653&rft.eissn=1610-3661&rft_id=info:doi/10.1007/s10311-023-01624-z&rft_dat=%3Cproquest_cross%3E3153184037%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859383274&rft_id=info:pmid/&rfr_iscdi=true |