Efficient Approximation of Quantum Channel Fidelity Exploiting Symmetry

Determining the optimal fidelity for the transmission of quantum information over noisy quantum channels is one of the central problems in quantum information theory. Recently, [Berta-Borderi-Fawzi-Scholz, Mathematical Programming, 2021] introduced an asymptotically converging semidefinite programmi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Yeow Meng Chee, Ta, Hoang, Van Khu Vu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Yeow Meng Chee
Ta, Hoang
Van Khu Vu
description Determining the optimal fidelity for the transmission of quantum information over noisy quantum channels is one of the central problems in quantum information theory. Recently, [Berta-Borderi-Fawzi-Scholz, Mathematical Programming, 2021] introduced an asymptotically converging semidefinite programming hierarchy of outer bounds for this quantity. However, the size of the semidefinite programs (SDPs) grows exponentially with respect to the level of the hierarchy, thus making their computation unscalable. In this work, by exploiting the symmetries in the SDP, we show that, for a fixed output dimension of the quantum channel, we can compute the SDP in time polynomial with respect to the level of the hierarchy and input dimension. As a direct consequence of our result, the optimal fidelity can be approximated with an accuracy of \(\epsilon\) in \(\mathrm{poly}(1/\epsilon, \text{input dimension})\) time.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2859356444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2859356444</sourcerecordid><originalsourceid>FETCH-proquest_journals_28593564443</originalsourceid><addsrcrecordid>eNqNjL0KwjAYAIMgWLTvEHAu1PzUOkppdRXdS6iJfiU_tUmgfXs7-ABON9xxK5QQSg9ZyQjZoNT7Ps9zUhwJ5zRBl1op6EDagM_DMLoJjAjgLHYK36KwIRpcvYW1UuMGnlJDmHE9DdpBAPvC99kYGcZ5h9ZKaC_TH7do39SP6potz0-UPrS9i6NdVEtKfqK8YIzR_6ovQt88SA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859356444</pqid></control><display><type>article</type><title>Efficient Approximation of Quantum Channel Fidelity Exploiting Symmetry</title><source>Free E- Journals</source><creator>Yeow Meng Chee ; Ta, Hoang ; Van Khu Vu</creator><creatorcontrib>Yeow Meng Chee ; Ta, Hoang ; Van Khu Vu</creatorcontrib><description>Determining the optimal fidelity for the transmission of quantum information over noisy quantum channels is one of the central problems in quantum information theory. Recently, [Berta-Borderi-Fawzi-Scholz, Mathematical Programming, 2021] introduced an asymptotically converging semidefinite programming hierarchy of outer bounds for this quantity. However, the size of the semidefinite programs (SDPs) grows exponentially with respect to the level of the hierarchy, thus making their computation unscalable. In this work, by exploiting the symmetries in the SDP, we show that, for a fixed output dimension of the quantum channel, we can compute the SDP in time polynomial with respect to the level of the hierarchy and input dimension. As a direct consequence of our result, the optimal fidelity can be approximated with an accuracy of \(\epsilon\) in \(\mathrm{poly}(1/\epsilon, \text{input dimension})\) time.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Approximation ; Information theory ; Mathematical analysis ; Mathematical programming ; Polynomials ; Quantum computing ; Quantum phenomena ; Semidefinite programming</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Yeow Meng Chee</creatorcontrib><creatorcontrib>Ta, Hoang</creatorcontrib><creatorcontrib>Van Khu Vu</creatorcontrib><title>Efficient Approximation of Quantum Channel Fidelity Exploiting Symmetry</title><title>arXiv.org</title><description>Determining the optimal fidelity for the transmission of quantum information over noisy quantum channels is one of the central problems in quantum information theory. Recently, [Berta-Borderi-Fawzi-Scholz, Mathematical Programming, 2021] introduced an asymptotically converging semidefinite programming hierarchy of outer bounds for this quantity. However, the size of the semidefinite programs (SDPs) grows exponentially with respect to the level of the hierarchy, thus making their computation unscalable. In this work, by exploiting the symmetries in the SDP, we show that, for a fixed output dimension of the quantum channel, we can compute the SDP in time polynomial with respect to the level of the hierarchy and input dimension. As a direct consequence of our result, the optimal fidelity can be approximated with an accuracy of \(\epsilon\) in \(\mathrm{poly}(1/\epsilon, \text{input dimension})\) time.</description><subject>Accuracy</subject><subject>Approximation</subject><subject>Information theory</subject><subject>Mathematical analysis</subject><subject>Mathematical programming</subject><subject>Polynomials</subject><subject>Quantum computing</subject><subject>Quantum phenomena</subject><subject>Semidefinite programming</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjL0KwjAYAIMgWLTvEHAu1PzUOkppdRXdS6iJfiU_tUmgfXs7-ABON9xxK5QQSg9ZyQjZoNT7Ps9zUhwJ5zRBl1op6EDagM_DMLoJjAjgLHYK36KwIRpcvYW1UuMGnlJDmHE9DdpBAPvC99kYGcZ5h9ZKaC_TH7do39SP6potz0-UPrS9i6NdVEtKfqK8YIzR_6ovQt88SA</recordid><startdate>20240321</startdate><enddate>20240321</enddate><creator>Yeow Meng Chee</creator><creator>Ta, Hoang</creator><creator>Van Khu Vu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240321</creationdate><title>Efficient Approximation of Quantum Channel Fidelity Exploiting Symmetry</title><author>Yeow Meng Chee ; Ta, Hoang ; Van Khu Vu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28593564443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Approximation</topic><topic>Information theory</topic><topic>Mathematical analysis</topic><topic>Mathematical programming</topic><topic>Polynomials</topic><topic>Quantum computing</topic><topic>Quantum phenomena</topic><topic>Semidefinite programming</topic><toplevel>online_resources</toplevel><creatorcontrib>Yeow Meng Chee</creatorcontrib><creatorcontrib>Ta, Hoang</creatorcontrib><creatorcontrib>Van Khu Vu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yeow Meng Chee</au><au>Ta, Hoang</au><au>Van Khu Vu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Efficient Approximation of Quantum Channel Fidelity Exploiting Symmetry</atitle><jtitle>arXiv.org</jtitle><date>2024-03-21</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Determining the optimal fidelity for the transmission of quantum information over noisy quantum channels is one of the central problems in quantum information theory. Recently, [Berta-Borderi-Fawzi-Scholz, Mathematical Programming, 2021] introduced an asymptotically converging semidefinite programming hierarchy of outer bounds for this quantity. However, the size of the semidefinite programs (SDPs) grows exponentially with respect to the level of the hierarchy, thus making their computation unscalable. In this work, by exploiting the symmetries in the SDP, we show that, for a fixed output dimension of the quantum channel, we can compute the SDP in time polynomial with respect to the level of the hierarchy and input dimension. As a direct consequence of our result, the optimal fidelity can be approximated with an accuracy of \(\epsilon\) in \(\mathrm{poly}(1/\epsilon, \text{input dimension})\) time.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2859356444
source Free E- Journals
subjects Accuracy
Approximation
Information theory
Mathematical analysis
Mathematical programming
Polynomials
Quantum computing
Quantum phenomena
Semidefinite programming
title Efficient Approximation of Quantum Channel Fidelity Exploiting Symmetry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A47%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Efficient%20Approximation%20of%20Quantum%20Channel%20Fidelity%20Exploiting%20Symmetry&rft.jtitle=arXiv.org&rft.au=Yeow%20Meng%20Chee&rft.date=2024-03-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2859356444%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859356444&rft_id=info:pmid/&rfr_iscdi=true