Bifurcation analysis of generalized damped forced KDV equation and its analytical solitary wave solutions
In the present study, we investigate a generalized form of the Korteweg–de Vries (KdV) equation which is given by ut + Punux + Quxxx = 0. The analytical solution is generated using the sine-cosine method, which produces multi-solitons for different values of the parameters involved. The effects of t...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2852 |
creator | Tomar, Shruti Chadha, Naresh M. Raut, Santanu |
description | In the present study, we investigate a generalized form of the Korteweg–de Vries (KdV) equation which is given by ut + Punux + Quxxx = 0. The analytical solution is generated using the sine-cosine method, which produces multi-solitons for different values of the parameters involved. The effects of the non-linear coefficient (P), dispersion parameter (Q), and the exponent ’n ’ on to the solitons have been studied. Furthermore, the generalized KdV equation is modified to generalized damped forced KdV (DFKdV equation given by ut + Punux + Quxxx + Su = f (t), where additional damping term Su and forcing term f have been introduced. For this DFKdV, a few standard components such as phase portraits and Lyapunov exponents from the bifurcation theory of planar dynamical systems [4] have been employed to discuss various conditions on the parameters for the existence of the various types of solutions including chaos. |
doi_str_mv | 10.1063/5.0164770 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2859309531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2859309531</sourcerecordid><originalsourceid>FETCH-LOGICAL-p965-e0b110926de2451aab18c4fa47d7fc3ce0f9c869b5c4bbad908a1dac8dcb55273</originalsourceid><addsrcrecordid>eNo1kF1LwzAUhoMoOKcX_oOAd0Jn0iRNc6lzfuDAmyHehdN8SEa3dkmrzF9vy-bVy4HnPTy8CF1TMqOkYHdiRmjBpSQnaEKFoJksaHGKJoQonuWcfZ6ji5TWhORKynKCwkPwfTTQhWaLYQv1PoWEG4-_3NZFqMOvs9jCph3CN9EM8fb4gd2u_69YHLp0qHbBQI1TU4cO4h7_wLcbr34k0yU681And3XMKVo9LVbzl2z5_vw6v19mrSpE5khFKVF5YV3OBQWoaGm4By6t9IYZR7wyZaEqYXhVgVWkBGrBlNZUQuSSTdHN4W0bm13vUqfXTR8Hu6TzUihGlGB0oG4PVDKD6-in2xg2g7WmRI9LaqGPS7I_EmNnww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2859309531</pqid></control><display><type>conference_proceeding</type><title>Bifurcation analysis of generalized damped forced KDV equation and its analytical solitary wave solutions</title><source>AIP Journals Complete</source><creator>Tomar, Shruti ; Chadha, Naresh M. ; Raut, Santanu</creator><contributor>Kumar, Pankaj ; Vennila, B. ; Vijayakumar, B. ; Sasikumar, J.</contributor><creatorcontrib>Tomar, Shruti ; Chadha, Naresh M. ; Raut, Santanu ; Kumar, Pankaj ; Vennila, B. ; Vijayakumar, B. ; Sasikumar, J.</creatorcontrib><description>In the present study, we investigate a generalized form of the Korteweg–de Vries (KdV) equation which is given by ut + Punux + Quxxx = 0. The analytical solution is generated using the sine-cosine method, which produces multi-solitons for different values of the parameters involved. The effects of the non-linear coefficient (P), dispersion parameter (Q), and the exponent ’n ’ on to the solitons have been studied. Furthermore, the generalized KdV equation is modified to generalized damped forced KdV (DFKdV equation given by ut + Punux + Quxxx + Su = f (t), where additional damping term Su and forcing term f have been introduced. For this DFKdV, a few standard components such as phase portraits and Lyapunov exponents from the bifurcation theory of planar dynamical systems [4] have been employed to discuss various conditions on the parameters for the existence of the various types of solutions including chaos.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0164770</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Bifurcation theory ; Damping ; Exact solutions ; Korteweg-Devries equation ; Liapunov exponents ; Mathematical analysis ; Parameters ; Solitary waves ; Standard components ; Trigonometric functions</subject><ispartof>AIP conference proceedings, 2023, Vol.2852 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0164770$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,778,782,787,788,792,4500,23913,23914,25123,27907,27908,76135</link.rule.ids></links><search><contributor>Kumar, Pankaj</contributor><contributor>Vennila, B.</contributor><contributor>Vijayakumar, B.</contributor><contributor>Sasikumar, J.</contributor><creatorcontrib>Tomar, Shruti</creatorcontrib><creatorcontrib>Chadha, Naresh M.</creatorcontrib><creatorcontrib>Raut, Santanu</creatorcontrib><title>Bifurcation analysis of generalized damped forced KDV equation and its analytical solitary wave solutions</title><title>AIP conference proceedings</title><description>In the present study, we investigate a generalized form of the Korteweg–de Vries (KdV) equation which is given by ut + Punux + Quxxx = 0. The analytical solution is generated using the sine-cosine method, which produces multi-solitons for different values of the parameters involved. The effects of the non-linear coefficient (P), dispersion parameter (Q), and the exponent ’n ’ on to the solitons have been studied. Furthermore, the generalized KdV equation is modified to generalized damped forced KdV (DFKdV equation given by ut + Punux + Quxxx + Su = f (t), where additional damping term Su and forcing term f have been introduced. For this DFKdV, a few standard components such as phase portraits and Lyapunov exponents from the bifurcation theory of planar dynamical systems [4] have been employed to discuss various conditions on the parameters for the existence of the various types of solutions including chaos.</description><subject>Bifurcation theory</subject><subject>Damping</subject><subject>Exact solutions</subject><subject>Korteweg-Devries equation</subject><subject>Liapunov exponents</subject><subject>Mathematical analysis</subject><subject>Parameters</subject><subject>Solitary waves</subject><subject>Standard components</subject><subject>Trigonometric functions</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNo1kF1LwzAUhoMoOKcX_oOAd0Jn0iRNc6lzfuDAmyHehdN8SEa3dkmrzF9vy-bVy4HnPTy8CF1TMqOkYHdiRmjBpSQnaEKFoJksaHGKJoQonuWcfZ6ji5TWhORKynKCwkPwfTTQhWaLYQv1PoWEG4-_3NZFqMOvs9jCph3CN9EM8fb4gd2u_69YHLp0qHbBQI1TU4cO4h7_wLcbr34k0yU681And3XMKVo9LVbzl2z5_vw6v19mrSpE5khFKVF5YV3OBQWoaGm4By6t9IYZR7wyZaEqYXhVgVWkBGrBlNZUQuSSTdHN4W0bm13vUqfXTR8Hu6TzUihGlGB0oG4PVDKD6-in2xg2g7WmRI9LaqGPS7I_EmNnww</recordid><startdate>20230831</startdate><enddate>20230831</enddate><creator>Tomar, Shruti</creator><creator>Chadha, Naresh M.</creator><creator>Raut, Santanu</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230831</creationdate><title>Bifurcation analysis of generalized damped forced KDV equation and its analytical solitary wave solutions</title><author>Tomar, Shruti ; Chadha, Naresh M. ; Raut, Santanu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p965-e0b110926de2451aab18c4fa47d7fc3ce0f9c869b5c4bbad908a1dac8dcb55273</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bifurcation theory</topic><topic>Damping</topic><topic>Exact solutions</topic><topic>Korteweg-Devries equation</topic><topic>Liapunov exponents</topic><topic>Mathematical analysis</topic><topic>Parameters</topic><topic>Solitary waves</topic><topic>Standard components</topic><topic>Trigonometric functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tomar, Shruti</creatorcontrib><creatorcontrib>Chadha, Naresh M.</creatorcontrib><creatorcontrib>Raut, Santanu</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tomar, Shruti</au><au>Chadha, Naresh M.</au><au>Raut, Santanu</au><au>Kumar, Pankaj</au><au>Vennila, B.</au><au>Vijayakumar, B.</au><au>Sasikumar, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Bifurcation analysis of generalized damped forced KDV equation and its analytical solitary wave solutions</atitle><btitle>AIP conference proceedings</btitle><date>2023-08-31</date><risdate>2023</risdate><volume>2852</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In the present study, we investigate a generalized form of the Korteweg–de Vries (KdV) equation which is given by ut + Punux + Quxxx = 0. The analytical solution is generated using the sine-cosine method, which produces multi-solitons for different values of the parameters involved. The effects of the non-linear coefficient (P), dispersion parameter (Q), and the exponent ’n ’ on to the solitons have been studied. Furthermore, the generalized KdV equation is modified to generalized damped forced KdV (DFKdV equation given by ut + Punux + Quxxx + Su = f (t), where additional damping term Su and forcing term f have been introduced. For this DFKdV, a few standard components such as phase portraits and Lyapunov exponents from the bifurcation theory of planar dynamical systems [4] have been employed to discuss various conditions on the parameters for the existence of the various types of solutions including chaos.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0164770</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2023, Vol.2852 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2859309531 |
source | AIP Journals Complete |
subjects | Bifurcation theory Damping Exact solutions Korteweg-Devries equation Liapunov exponents Mathematical analysis Parameters Solitary waves Standard components Trigonometric functions |
title | Bifurcation analysis of generalized damped forced KDV equation and its analytical solitary wave solutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A56%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Bifurcation%20analysis%20of%20generalized%20damped%20forced%20KDV%20equation%20and%20its%20analytical%20solitary%20wave%20solutions&rft.btitle=AIP%20conference%20proceedings&rft.au=Tomar,%20Shruti&rft.date=2023-08-31&rft.volume=2852&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0164770&rft_dat=%3Cproquest_scita%3E2859309531%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859309531&rft_id=info:pmid/&rfr_iscdi=true |