Bornil: An open-source sign language data crowdsourcing platform for AI enabled dialect-agnostic communication

The absence of annotated sign language datasets has hindered the development of sign language recognition and translation technologies. In this paper, we introduce Bornil; a crowdsource-friendly, multilingual sign language data collection, annotation, and validation platform. Bornil allows users to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-08
Hauptverfasser: Shahriar Elahi Dhruvo, Rahman, Mohammad Akhlaqur, Mandal, Manash Kumar, Md Istiak Hossain Shihab, Noman Ansary, A A, Kaneez, Fatema Shithi, Sanjida Khanom, Akter, Rabeya, Safaeid Hossain Arib, Ansary, M N, Sazia Mehnaz, Sultana, Rezwana, Rahman, Sejuti, Sayma Sultana Chowdhury, Sabbir Ahmed Chowdhury, Sadeque, Farig, Sushmit, Asif
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Shahriar Elahi Dhruvo
Rahman, Mohammad Akhlaqur
Mandal, Manash Kumar
Md Istiak Hossain Shihab
Noman Ansary, A A
Kaneez, Fatema Shithi
Sanjida Khanom
Akter, Rabeya
Safaeid Hossain Arib
Ansary, M N
Sazia Mehnaz
Sultana, Rezwana
Rahman, Sejuti
Sayma Sultana Chowdhury
Sabbir Ahmed Chowdhury
Sadeque, Farig
Sushmit, Asif
description The absence of annotated sign language datasets has hindered the development of sign language recognition and translation technologies. In this paper, we introduce Bornil; a crowdsource-friendly, multilingual sign language data collection, annotation, and validation platform. Bornil allows users to record sign language gestures and lets annotators perform sentence and gloss-level annotation. It also allows validators to make sure of the quality of both the recorded videos and the annotations through manual validation to develop high-quality datasets for deep learning-based Automatic Sign Language Recognition. To demonstrate the system's efficacy; we collected the largest sign language dataset for Bangladeshi Sign Language dialect, perform deep learning based Sign Language Recognition modeling, and report the benchmark performance. The Bornil platform, BornilDB v1.0 Dataset, and the codebases are available on https://bornil.bengali.ai
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2858806935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858806935</sourcerecordid><originalsourceid>FETCH-proquest_journals_28588069353</originalsourceid><addsrcrecordid>eNqNjUEKwjAQRYMgWNQ7DLgu1MRqdVdF0b17GdMYIulMTVK8vkU8gJv3F-_DG4lMKrXMq5WUEzGP8VkUhVxvZFmqTNCeAzm_g5qAO0N55D5oA9FZAo9ke7QGGkwIOvC7-WpHFjqP6cGhhQFQX8AQ3r1poHHojU45WuKYnAbNbduT05gc00yMH-ijmf92Khan4_VwzrvAr97EdHsOARrUTVZlVRXrrSrVf68PSelKiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858806935</pqid></control><display><type>article</type><title>Bornil: An open-source sign language data crowdsourcing platform for AI enabled dialect-agnostic communication</title><source>Free E- Journals</source><creator>Shahriar Elahi Dhruvo ; Rahman, Mohammad Akhlaqur ; Mandal, Manash Kumar ; Md Istiak Hossain Shihab ; Noman Ansary, A A ; Kaneez, Fatema Shithi ; Sanjida Khanom ; Akter, Rabeya ; Safaeid Hossain Arib ; Ansary, M N ; Sazia Mehnaz ; Sultana, Rezwana ; Rahman, Sejuti ; Sayma Sultana Chowdhury ; Sabbir Ahmed Chowdhury ; Sadeque, Farig ; Sushmit, Asif</creator><creatorcontrib>Shahriar Elahi Dhruvo ; Rahman, Mohammad Akhlaqur ; Mandal, Manash Kumar ; Md Istiak Hossain Shihab ; Noman Ansary, A A ; Kaneez, Fatema Shithi ; Sanjida Khanom ; Akter, Rabeya ; Safaeid Hossain Arib ; Ansary, M N ; Sazia Mehnaz ; Sultana, Rezwana ; Rahman, Sejuti ; Sayma Sultana Chowdhury ; Sabbir Ahmed Chowdhury ; Sadeque, Farig ; Sushmit, Asif</creatorcontrib><description>The absence of annotated sign language datasets has hindered the development of sign language recognition and translation technologies. In this paper, we introduce Bornil; a crowdsource-friendly, multilingual sign language data collection, annotation, and validation platform. Bornil allows users to record sign language gestures and lets annotators perform sentence and gloss-level annotation. It also allows validators to make sure of the quality of both the recorded videos and the annotations through manual validation to develop high-quality datasets for deep learning-based Automatic Sign Language Recognition. To demonstrate the system's efficacy; we collected the largest sign language dataset for Bangladeshi Sign Language dialect, perform deep learning based Sign Language Recognition modeling, and report the benchmark performance. The Bornil platform, BornilDB v1.0 Dataset, and the codebases are available on https://bornil.bengali.ai</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Annotations ; Crowdsourcing ; Data collection ; Datasets ; Deep learning ; Gloss ; Recognition</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Shahriar Elahi Dhruvo</creatorcontrib><creatorcontrib>Rahman, Mohammad Akhlaqur</creatorcontrib><creatorcontrib>Mandal, Manash Kumar</creatorcontrib><creatorcontrib>Md Istiak Hossain Shihab</creatorcontrib><creatorcontrib>Noman Ansary, A A</creatorcontrib><creatorcontrib>Kaneez, Fatema Shithi</creatorcontrib><creatorcontrib>Sanjida Khanom</creatorcontrib><creatorcontrib>Akter, Rabeya</creatorcontrib><creatorcontrib>Safaeid Hossain Arib</creatorcontrib><creatorcontrib>Ansary, M N</creatorcontrib><creatorcontrib>Sazia Mehnaz</creatorcontrib><creatorcontrib>Sultana, Rezwana</creatorcontrib><creatorcontrib>Rahman, Sejuti</creatorcontrib><creatorcontrib>Sayma Sultana Chowdhury</creatorcontrib><creatorcontrib>Sabbir Ahmed Chowdhury</creatorcontrib><creatorcontrib>Sadeque, Farig</creatorcontrib><creatorcontrib>Sushmit, Asif</creatorcontrib><title>Bornil: An open-source sign language data crowdsourcing platform for AI enabled dialect-agnostic communication</title><title>arXiv.org</title><description>The absence of annotated sign language datasets has hindered the development of sign language recognition and translation technologies. In this paper, we introduce Bornil; a crowdsource-friendly, multilingual sign language data collection, annotation, and validation platform. Bornil allows users to record sign language gestures and lets annotators perform sentence and gloss-level annotation. It also allows validators to make sure of the quality of both the recorded videos and the annotations through manual validation to develop high-quality datasets for deep learning-based Automatic Sign Language Recognition. To demonstrate the system's efficacy; we collected the largest sign language dataset for Bangladeshi Sign Language dialect, perform deep learning based Sign Language Recognition modeling, and report the benchmark performance. The Bornil platform, BornilDB v1.0 Dataset, and the codebases are available on https://bornil.bengali.ai</description><subject>Annotations</subject><subject>Crowdsourcing</subject><subject>Data collection</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Gloss</subject><subject>Recognition</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjUEKwjAQRYMgWNQ7DLgu1MRqdVdF0b17GdMYIulMTVK8vkU8gJv3F-_DG4lMKrXMq5WUEzGP8VkUhVxvZFmqTNCeAzm_g5qAO0N55D5oA9FZAo9ke7QGGkwIOvC7-WpHFjqP6cGhhQFQX8AQ3r1poHHojU45WuKYnAbNbduT05gc00yMH-ijmf92Khan4_VwzrvAr97EdHsOARrUTVZlVRXrrSrVf68PSelKiA</recordid><startdate>20230829</startdate><enddate>20230829</enddate><creator>Shahriar Elahi Dhruvo</creator><creator>Rahman, Mohammad Akhlaqur</creator><creator>Mandal, Manash Kumar</creator><creator>Md Istiak Hossain Shihab</creator><creator>Noman Ansary, A A</creator><creator>Kaneez, Fatema Shithi</creator><creator>Sanjida Khanom</creator><creator>Akter, Rabeya</creator><creator>Safaeid Hossain Arib</creator><creator>Ansary, M N</creator><creator>Sazia Mehnaz</creator><creator>Sultana, Rezwana</creator><creator>Rahman, Sejuti</creator><creator>Sayma Sultana Chowdhury</creator><creator>Sabbir Ahmed Chowdhury</creator><creator>Sadeque, Farig</creator><creator>Sushmit, Asif</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230829</creationdate><title>Bornil: An open-source sign language data crowdsourcing platform for AI enabled dialect-agnostic communication</title><author>Shahriar Elahi Dhruvo ; Rahman, Mohammad Akhlaqur ; Mandal, Manash Kumar ; Md Istiak Hossain Shihab ; Noman Ansary, A A ; Kaneez, Fatema Shithi ; Sanjida Khanom ; Akter, Rabeya ; Safaeid Hossain Arib ; Ansary, M N ; Sazia Mehnaz ; Sultana, Rezwana ; Rahman, Sejuti ; Sayma Sultana Chowdhury ; Sabbir Ahmed Chowdhury ; Sadeque, Farig ; Sushmit, Asif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28588069353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Annotations</topic><topic>Crowdsourcing</topic><topic>Data collection</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Gloss</topic><topic>Recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Shahriar Elahi Dhruvo</creatorcontrib><creatorcontrib>Rahman, Mohammad Akhlaqur</creatorcontrib><creatorcontrib>Mandal, Manash Kumar</creatorcontrib><creatorcontrib>Md Istiak Hossain Shihab</creatorcontrib><creatorcontrib>Noman Ansary, A A</creatorcontrib><creatorcontrib>Kaneez, Fatema Shithi</creatorcontrib><creatorcontrib>Sanjida Khanom</creatorcontrib><creatorcontrib>Akter, Rabeya</creatorcontrib><creatorcontrib>Safaeid Hossain Arib</creatorcontrib><creatorcontrib>Ansary, M N</creatorcontrib><creatorcontrib>Sazia Mehnaz</creatorcontrib><creatorcontrib>Sultana, Rezwana</creatorcontrib><creatorcontrib>Rahman, Sejuti</creatorcontrib><creatorcontrib>Sayma Sultana Chowdhury</creatorcontrib><creatorcontrib>Sabbir Ahmed Chowdhury</creatorcontrib><creatorcontrib>Sadeque, Farig</creatorcontrib><creatorcontrib>Sushmit, Asif</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shahriar Elahi Dhruvo</au><au>Rahman, Mohammad Akhlaqur</au><au>Mandal, Manash Kumar</au><au>Md Istiak Hossain Shihab</au><au>Noman Ansary, A A</au><au>Kaneez, Fatema Shithi</au><au>Sanjida Khanom</au><au>Akter, Rabeya</au><au>Safaeid Hossain Arib</au><au>Ansary, M N</au><au>Sazia Mehnaz</au><au>Sultana, Rezwana</au><au>Rahman, Sejuti</au><au>Sayma Sultana Chowdhury</au><au>Sabbir Ahmed Chowdhury</au><au>Sadeque, Farig</au><au>Sushmit, Asif</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Bornil: An open-source sign language data crowdsourcing platform for AI enabled dialect-agnostic communication</atitle><jtitle>arXiv.org</jtitle><date>2023-08-29</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The absence of annotated sign language datasets has hindered the development of sign language recognition and translation technologies. In this paper, we introduce Bornil; a crowdsource-friendly, multilingual sign language data collection, annotation, and validation platform. Bornil allows users to record sign language gestures and lets annotators perform sentence and gloss-level annotation. It also allows validators to make sure of the quality of both the recorded videos and the annotations through manual validation to develop high-quality datasets for deep learning-based Automatic Sign Language Recognition. To demonstrate the system's efficacy; we collected the largest sign language dataset for Bangladeshi Sign Language dialect, perform deep learning based Sign Language Recognition modeling, and report the benchmark performance. The Bornil platform, BornilDB v1.0 Dataset, and the codebases are available on https://bornil.bengali.ai</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2858806935
source Free E- Journals
subjects Annotations
Crowdsourcing
Data collection
Datasets
Deep learning
Gloss
Recognition
title Bornil: An open-source sign language data crowdsourcing platform for AI enabled dialect-agnostic communication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A02%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Bornil:%20An%20open-source%20sign%20language%20data%20crowdsourcing%20platform%20for%20AI%20enabled%20dialect-agnostic%20communication&rft.jtitle=arXiv.org&rft.au=Shahriar%20Elahi%20Dhruvo&rft.date=2023-08-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2858806935%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2858806935&rft_id=info:pmid/&rfr_iscdi=true