Selective Volatilization and Recovery of Valuable Metals by Vacuum Carbothermal Reduction of Copper Anode Slime
Copper anode slime produced by electrorefining copper has a high recovery value due to the valuable metals and platinum group metals present. Neither traditional cupellation processes nor hydrometallurgical leaching processes can solve the problem of arsenic enrichment in the system. According to th...
Gespeichert in:
Veröffentlicht in: | JOM (1989) 2023-09, Vol.75 (9), p.3489-3500 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3500 |
---|---|
container_issue | 9 |
container_start_page | 3489 |
container_title | JOM (1989) |
container_volume | 75 |
creator | Deng, Juhai Li, Zhichao Jiang, Wenlong Liu, DaChun He, Jilin Li, Baole |
description | Copper anode slime produced by electrorefining copper has a high recovery value due to the valuable metals and platinum group metals present. Neither traditional cupellation processes nor hydrometallurgical leaching processes can solve the problem of arsenic enrichment in the system. According to thermodynamic analysis, vacuum carbothermal reduction is feasible, but the saturation vapor pressure varies greatly among the reduction products. Therefore, separation of arsenic oxide, lead-bismuth compounds and precious metal components can be achieved via vacuum carbothermal reduction with selective volatilization. At the vacuum carbothermal reduction stage (823 K), the arsenic content in the residue was reduced from 9.35% to 0.48%, indicating a 94.89% arsenic removal efficiency. The vacuum distillation stage (1173 K) exhibited 94.21% Pb and 98.19% Bi removal efficiencies, and the recovery efficiencies for silver and gold were 97.49% and 99.99%, respectively. |
doi_str_mv | 10.1007/s11837-023-05996-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2858729254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858729254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-7bd365c2ef86b415341482b1b1841b0577d694219c7dca2a4237f197c1eabd83</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA82omyTbZYyl-QUWwpdeQZGd1y3ZTs7tC--uNreDNy8wwzPMOPIRcA7sFxtRdB6CFyhgXGcuLYpLtT8gIciky0DmcpplJlUkt9Dm56Lo1S5AsYETCAhv0ff2FdBUa29dNvU81tNS2JX1DH74w7mio6Mo2g3UN0hfsbdNRt0srPwwbOrPRhf4D48Y2CSkHfwhIzCxstxjptA0l0kVTb_CSnFWJxqvfPibLh_vl7Cmbvz4-z6bzzHPF-ky5Ukxyz7HSEychFxKk5g4caAmO5UqVk0JyKLwqveVWcqEqKJQHtK7UYkxujrHbGD4H7HqzDkNs00fDda4VL3iSMyb8eOVj6LqIldnGemPjzgAzP17N0atJXs3Bq9knSByhLh237xj_ov-hvgGQtHxV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858729254</pqid></control><display><type>article</type><title>Selective Volatilization and Recovery of Valuable Metals by Vacuum Carbothermal Reduction of Copper Anode Slime</title><source>SpringerNature Journals</source><creator>Deng, Juhai ; Li, Zhichao ; Jiang, Wenlong ; Liu, DaChun ; He, Jilin ; Li, Baole</creator><creatorcontrib>Deng, Juhai ; Li, Zhichao ; Jiang, Wenlong ; Liu, DaChun ; He, Jilin ; Li, Baole</creatorcontrib><description>Copper anode slime produced by electrorefining copper has a high recovery value due to the valuable metals and platinum group metals present. Neither traditional cupellation processes nor hydrometallurgical leaching processes can solve the problem of arsenic enrichment in the system. According to thermodynamic analysis, vacuum carbothermal reduction is feasible, but the saturation vapor pressure varies greatly among the reduction products. Therefore, separation of arsenic oxide, lead-bismuth compounds and precious metal components can be achieved via vacuum carbothermal reduction with selective volatilization. At the vacuum carbothermal reduction stage (823 K), the arsenic content in the residue was reduced from 9.35% to 0.48%, indicating a 94.89% arsenic removal efficiency. The vacuum distillation stage (1173 K) exhibited 94.21% Pb and 98.19% Bi removal efficiencies, and the recovery efficiencies for silver and gold were 97.49% and 99.99%, respectively.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-023-05996-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Anode sludge ; Arsenic ; Arsenic compounds ; Arsenic removal ; Bismuth compounds ; Chemistry/Food Science ; Copper ; Earth Sciences ; Electrorefining ; Energy consumption ; Engineering ; Environment ; Gold ; Leaching ; Lead ; Materials recovery ; Metallurgy ; Methods ; Oxidation ; Physics ; Platinum metals ; Precious metals ; Pyrometallurgical Techniques Driving Recycling and the Circular Economy ; Raw materials ; Scanning electron microscopy ; Scientific imaging ; Selenium ; Silver ; Slime ; Sulfuric acid ; Vacuum distillation ; Vapor pressure ; Vaporization</subject><ispartof>JOM (1989), 2023-09, Vol.75 (9), p.3489-3500</ispartof><rights>The Minerals, Metals & Materials Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. Sep 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-7bd365c2ef86b415341482b1b1841b0577d694219c7dca2a4237f197c1eabd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-023-05996-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-023-05996-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Deng, Juhai</creatorcontrib><creatorcontrib>Li, Zhichao</creatorcontrib><creatorcontrib>Jiang, Wenlong</creatorcontrib><creatorcontrib>Liu, DaChun</creatorcontrib><creatorcontrib>He, Jilin</creatorcontrib><creatorcontrib>Li, Baole</creatorcontrib><title>Selective Volatilization and Recovery of Valuable Metals by Vacuum Carbothermal Reduction of Copper Anode Slime</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>Copper anode slime produced by electrorefining copper has a high recovery value due to the valuable metals and platinum group metals present. Neither traditional cupellation processes nor hydrometallurgical leaching processes can solve the problem of arsenic enrichment in the system. According to thermodynamic analysis, vacuum carbothermal reduction is feasible, but the saturation vapor pressure varies greatly among the reduction products. Therefore, separation of arsenic oxide, lead-bismuth compounds and precious metal components can be achieved via vacuum carbothermal reduction with selective volatilization. At the vacuum carbothermal reduction stage (823 K), the arsenic content in the residue was reduced from 9.35% to 0.48%, indicating a 94.89% arsenic removal efficiency. The vacuum distillation stage (1173 K) exhibited 94.21% Pb and 98.19% Bi removal efficiencies, and the recovery efficiencies for silver and gold were 97.49% and 99.99%, respectively.</description><subject>Alloys</subject><subject>Anode sludge</subject><subject>Arsenic</subject><subject>Arsenic compounds</subject><subject>Arsenic removal</subject><subject>Bismuth compounds</subject><subject>Chemistry/Food Science</subject><subject>Copper</subject><subject>Earth Sciences</subject><subject>Electrorefining</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Environment</subject><subject>Gold</subject><subject>Leaching</subject><subject>Lead</subject><subject>Materials recovery</subject><subject>Metallurgy</subject><subject>Methods</subject><subject>Oxidation</subject><subject>Physics</subject><subject>Platinum metals</subject><subject>Precious metals</subject><subject>Pyrometallurgical Techniques Driving Recycling and the Circular Economy</subject><subject>Raw materials</subject><subject>Scanning electron microscopy</subject><subject>Scientific imaging</subject><subject>Selenium</subject><subject>Silver</subject><subject>Slime</subject><subject>Sulfuric acid</subject><subject>Vacuum distillation</subject><subject>Vapor pressure</subject><subject>Vaporization</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPA82omyTbZYyl-QUWwpdeQZGd1y3ZTs7tC--uNreDNy8wwzPMOPIRcA7sFxtRdB6CFyhgXGcuLYpLtT8gIciky0DmcpplJlUkt9Dm56Lo1S5AsYETCAhv0ff2FdBUa29dNvU81tNS2JX1DH74w7mio6Mo2g3UN0hfsbdNRt0srPwwbOrPRhf4D48Y2CSkHfwhIzCxstxjptA0l0kVTb_CSnFWJxqvfPibLh_vl7Cmbvz4-z6bzzHPF-ky5Ukxyz7HSEychFxKk5g4caAmO5UqVk0JyKLwqveVWcqEqKJQHtK7UYkxujrHbGD4H7HqzDkNs00fDda4VL3iSMyb8eOVj6LqIldnGemPjzgAzP17N0atJXs3Bq9knSByhLh237xj_ov-hvgGQtHxV</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Deng, Juhai</creator><creator>Li, Zhichao</creator><creator>Jiang, Wenlong</creator><creator>Liu, DaChun</creator><creator>He, Jilin</creator><creator>Li, Baole</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20230901</creationdate><title>Selective Volatilization and Recovery of Valuable Metals by Vacuum Carbothermal Reduction of Copper Anode Slime</title><author>Deng, Juhai ; Li, Zhichao ; Jiang, Wenlong ; Liu, DaChun ; He, Jilin ; Li, Baole</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-7bd365c2ef86b415341482b1b1841b0577d694219c7dca2a4237f197c1eabd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alloys</topic><topic>Anode sludge</topic><topic>Arsenic</topic><topic>Arsenic compounds</topic><topic>Arsenic removal</topic><topic>Bismuth compounds</topic><topic>Chemistry/Food Science</topic><topic>Copper</topic><topic>Earth Sciences</topic><topic>Electrorefining</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Environment</topic><topic>Gold</topic><topic>Leaching</topic><topic>Lead</topic><topic>Materials recovery</topic><topic>Metallurgy</topic><topic>Methods</topic><topic>Oxidation</topic><topic>Physics</topic><topic>Platinum metals</topic><topic>Precious metals</topic><topic>Pyrometallurgical Techniques Driving Recycling and the Circular Economy</topic><topic>Raw materials</topic><topic>Scanning electron microscopy</topic><topic>Scientific imaging</topic><topic>Selenium</topic><topic>Silver</topic><topic>Slime</topic><topic>Sulfuric acid</topic><topic>Vacuum distillation</topic><topic>Vapor pressure</topic><topic>Vaporization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Juhai</creatorcontrib><creatorcontrib>Li, Zhichao</creatorcontrib><creatorcontrib>Jiang, Wenlong</creatorcontrib><creatorcontrib>Liu, DaChun</creatorcontrib><creatorcontrib>He, Jilin</creatorcontrib><creatorcontrib>Li, Baole</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade & Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade & Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Juhai</au><au>Li, Zhichao</au><au>Jiang, Wenlong</au><au>Liu, DaChun</au><au>He, Jilin</au><au>Li, Baole</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective Volatilization and Recovery of Valuable Metals by Vacuum Carbothermal Reduction of Copper Anode Slime</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>75</volume><issue>9</issue><spage>3489</spage><epage>3500</epage><pages>3489-3500</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>Copper anode slime produced by electrorefining copper has a high recovery value due to the valuable metals and platinum group metals present. Neither traditional cupellation processes nor hydrometallurgical leaching processes can solve the problem of arsenic enrichment in the system. According to thermodynamic analysis, vacuum carbothermal reduction is feasible, but the saturation vapor pressure varies greatly among the reduction products. Therefore, separation of arsenic oxide, lead-bismuth compounds and precious metal components can be achieved via vacuum carbothermal reduction with selective volatilization. At the vacuum carbothermal reduction stage (823 K), the arsenic content in the residue was reduced from 9.35% to 0.48%, indicating a 94.89% arsenic removal efficiency. The vacuum distillation stage (1173 K) exhibited 94.21% Pb and 98.19% Bi removal efficiencies, and the recovery efficiencies for silver and gold were 97.49% and 99.99%, respectively.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-023-05996-z</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-4838 |
ispartof | JOM (1989), 2023-09, Vol.75 (9), p.3489-3500 |
issn | 1047-4838 1543-1851 |
language | eng |
recordid | cdi_proquest_journals_2858729254 |
source | SpringerNature Journals |
subjects | Alloys Anode sludge Arsenic Arsenic compounds Arsenic removal Bismuth compounds Chemistry/Food Science Copper Earth Sciences Electrorefining Energy consumption Engineering Environment Gold Leaching Lead Materials recovery Metallurgy Methods Oxidation Physics Platinum metals Precious metals Pyrometallurgical Techniques Driving Recycling and the Circular Economy Raw materials Scanning electron microscopy Scientific imaging Selenium Silver Slime Sulfuric acid Vacuum distillation Vapor pressure Vaporization |
title | Selective Volatilization and Recovery of Valuable Metals by Vacuum Carbothermal Reduction of Copper Anode Slime |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A16%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20Volatilization%20and%20Recovery%20of%20Valuable%20Metals%20by%20Vacuum%20Carbothermal%20Reduction%20of%20Copper%20Anode%20Slime&rft.jtitle=JOM%20(1989)&rft.au=Deng,%20Juhai&rft.date=2023-09-01&rft.volume=75&rft.issue=9&rft.spage=3489&rft.epage=3500&rft.pages=3489-3500&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-023-05996-z&rft_dat=%3Cproquest_cross%3E2858729254%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2858729254&rft_id=info:pmid/&rfr_iscdi=true |