Inferring the Physics of Structural Evolution of Multicomponent Polymers via Machine-Learning-Accelerated Method
Dynamic self-consistent field theory (DSCFT) is a fruitful approach for modeling the structural evolution and collective kinetics for a wide variety of multicomponent polymers. However, solving a set of DSCFT equations remains daunting because of high computational demand. Herein, a machine learning...
Gespeichert in:
Veröffentlicht in: | Chinese journal of polymer science 2023-09, Vol.41 (9), p.1377-1385 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1385 |
---|---|
container_issue | 9 |
container_start_page | 1377 |
container_title | Chinese journal of polymer science |
container_volume | 41 |
creator | Zhang, Kai-Hua Jiang, Ying Zhang, Liang-Shun |
description | Dynamic self-consistent field theory (DSCFT) is a fruitful approach for modeling the structural evolution and collective kinetics for a wide variety of multicomponent polymers. However, solving a set of DSCFT equations remains daunting because of high computational demand. Herein, a machine learning method, integrating low-dimensional representations of microstructures and long short-term memory neural networks, is used to accelerate the predictions of structural evolution of multicomponent polymers. It is definitively demonstrated that the neural-network-trained surrogate model has the capability to accurately forecast the structural evolution of homopolymer blends as well as diblock copolymers, without the requirement of “on-the-fly” solution of DSCFT equations. Importantly, the data-driven method can also infer the latent growth laws of phase-separated microstructures of multicomponent polymers through simply using a few of time sequences from their past, without the prior knowledge of the governing dynamics. Our study exemplifies how the machine-learning-accelerated method can be applied to understand and discover the physics of structural evolution in the complex polymer systems. |
doi_str_mv | 10.1007/s10118-023-2891-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2858666077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858666077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a607c71c1ac8f4374cf8ebf7763ea1168eaf788934f67c9b6bd8d32f3784f3713</originalsourceid><addsrcrecordid>eNp1kE9LwzAYxoMoOKcfwFvAczRpuiQ9jjF1sOFAPYcsfWM7uqYm6WDf3pYJnry8D7w8f-CH0D2jj4xS-RQZZUwRmnGSqYKR4gJNWM4LIjLKL9GEZjNBpJDFNbqJcU-pyOVMTlC3ah2EULdfOFWAt9Up1jZi7_B7Cr1NfTANXh5906fat-N_0zeptv7Q-RbahLe-OR0gRHysDd4YW9UtkDWY0A6dZG4tNBBMghJvIFW-vEVXzjQR7n51ij6flx-LV7J-e1kt5mtiOROJGEGllcwyY5XLucytU7BzUgoOhjGhwDipVMFzJ6QtdmJXqpJnjkuVD4fxKXo493bBf_cQk977PrTDpM7UTAkxDMjBxc4uG3yMAZzuQn0w4aQZ1SNYfQarB7B6BKuLIZOdM7EbuUH4a_4_9AM5k3zy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858666077</pqid></control><display><type>article</type><title>Inferring the Physics of Structural Evolution of Multicomponent Polymers via Machine-Learning-Accelerated Method</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Kai-Hua ; Jiang, Ying ; Zhang, Liang-Shun</creator><creatorcontrib>Zhang, Kai-Hua ; Jiang, Ying ; Zhang, Liang-Shun</creatorcontrib><description>Dynamic self-consistent field theory (DSCFT) is a fruitful approach for modeling the structural evolution and collective kinetics for a wide variety of multicomponent polymers. However, solving a set of DSCFT equations remains daunting because of high computational demand. Herein, a machine learning method, integrating low-dimensional representations of microstructures and long short-term memory neural networks, is used to accelerate the predictions of structural evolution of multicomponent polymers. It is definitively demonstrated that the neural-network-trained surrogate model has the capability to accurately forecast the structural evolution of homopolymer blends as well as diblock copolymers, without the requirement of “on-the-fly” solution of DSCFT equations. Importantly, the data-driven method can also infer the latent growth laws of phase-separated microstructures of multicomponent polymers through simply using a few of time sequences from their past, without the prior knowledge of the governing dynamics. Our study exemplifies how the machine-learning-accelerated method can be applied to understand and discover the physics of structural evolution in the complex polymer systems.</description><identifier>ISSN: 0256-7679</identifier><identifier>EISSN: 1439-6203</identifier><identifier>DOI: 10.1007/s10118-023-2891-9</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Block copolymers ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Evolution ; Field theory ; Industrial Chemistry/Chemical Engineering ; Machine learning ; Mathematical models ; Microstructure ; Neural networks ; Polymer Sciences ; Polymers ; Research Article ; Self consistent fields</subject><ispartof>Chinese journal of polymer science, 2023-09, Vol.41 (9), p.1377-1385</ispartof><rights>Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences 2022</rights><rights>Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a607c71c1ac8f4374cf8ebf7763ea1168eaf788934f67c9b6bd8d32f3784f3713</citedby><cites>FETCH-LOGICAL-c316t-a607c71c1ac8f4374cf8ebf7763ea1168eaf788934f67c9b6bd8d32f3784f3713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10118-023-2891-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10118-023-2891-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Zhang, Kai-Hua</creatorcontrib><creatorcontrib>Jiang, Ying</creatorcontrib><creatorcontrib>Zhang, Liang-Shun</creatorcontrib><title>Inferring the Physics of Structural Evolution of Multicomponent Polymers via Machine-Learning-Accelerated Method</title><title>Chinese journal of polymer science</title><addtitle>Chin J Polym Sci</addtitle><description>Dynamic self-consistent field theory (DSCFT) is a fruitful approach for modeling the structural evolution and collective kinetics for a wide variety of multicomponent polymers. However, solving a set of DSCFT equations remains daunting because of high computational demand. Herein, a machine learning method, integrating low-dimensional representations of microstructures and long short-term memory neural networks, is used to accelerate the predictions of structural evolution of multicomponent polymers. It is definitively demonstrated that the neural-network-trained surrogate model has the capability to accurately forecast the structural evolution of homopolymer blends as well as diblock copolymers, without the requirement of “on-the-fly” solution of DSCFT equations. Importantly, the data-driven method can also infer the latent growth laws of phase-separated microstructures of multicomponent polymers through simply using a few of time sequences from their past, without the prior knowledge of the governing dynamics. Our study exemplifies how the machine-learning-accelerated method can be applied to understand and discover the physics of structural evolution in the complex polymer systems.</description><subject>Block copolymers</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Evolution</subject><subject>Field theory</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Microstructure</subject><subject>Neural networks</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Research Article</subject><subject>Self consistent fields</subject><issn>0256-7679</issn><issn>1439-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LwzAYxoMoOKcfwFvAczRpuiQ9jjF1sOFAPYcsfWM7uqYm6WDf3pYJnry8D7w8f-CH0D2jj4xS-RQZZUwRmnGSqYKR4gJNWM4LIjLKL9GEZjNBpJDFNbqJcU-pyOVMTlC3ah2EULdfOFWAt9Up1jZi7_B7Cr1NfTANXh5906fat-N_0zeptv7Q-RbahLe-OR0gRHysDd4YW9UtkDWY0A6dZG4tNBBMghJvIFW-vEVXzjQR7n51ij6flx-LV7J-e1kt5mtiOROJGEGllcwyY5XLucytU7BzUgoOhjGhwDipVMFzJ6QtdmJXqpJnjkuVD4fxKXo493bBf_cQk977PrTDpM7UTAkxDMjBxc4uG3yMAZzuQn0w4aQZ1SNYfQarB7B6BKuLIZOdM7EbuUH4a_4_9AM5k3zy</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Zhang, Kai-Hua</creator><creator>Jiang, Ying</creator><creator>Zhang, Liang-Shun</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230901</creationdate><title>Inferring the Physics of Structural Evolution of Multicomponent Polymers via Machine-Learning-Accelerated Method</title><author>Zhang, Kai-Hua ; Jiang, Ying ; Zhang, Liang-Shun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a607c71c1ac8f4374cf8ebf7763ea1168eaf788934f67c9b6bd8d32f3784f3713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Block copolymers</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Evolution</topic><topic>Field theory</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Microstructure</topic><topic>Neural networks</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Research Article</topic><topic>Self consistent fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Kai-Hua</creatorcontrib><creatorcontrib>Jiang, Ying</creatorcontrib><creatorcontrib>Zhang, Liang-Shun</creatorcontrib><collection>CrossRef</collection><jtitle>Chinese journal of polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Kai-Hua</au><au>Jiang, Ying</au><au>Zhang, Liang-Shun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inferring the Physics of Structural Evolution of Multicomponent Polymers via Machine-Learning-Accelerated Method</atitle><jtitle>Chinese journal of polymer science</jtitle><stitle>Chin J Polym Sci</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>41</volume><issue>9</issue><spage>1377</spage><epage>1385</epage><pages>1377-1385</pages><issn>0256-7679</issn><eissn>1439-6203</eissn><abstract>Dynamic self-consistent field theory (DSCFT) is a fruitful approach for modeling the structural evolution and collective kinetics for a wide variety of multicomponent polymers. However, solving a set of DSCFT equations remains daunting because of high computational demand. Herein, a machine learning method, integrating low-dimensional representations of microstructures and long short-term memory neural networks, is used to accelerate the predictions of structural evolution of multicomponent polymers. It is definitively demonstrated that the neural-network-trained surrogate model has the capability to accurately forecast the structural evolution of homopolymer blends as well as diblock copolymers, without the requirement of “on-the-fly” solution of DSCFT equations. Importantly, the data-driven method can also infer the latent growth laws of phase-separated microstructures of multicomponent polymers through simply using a few of time sequences from their past, without the prior knowledge of the governing dynamics. Our study exemplifies how the machine-learning-accelerated method can be applied to understand and discover the physics of structural evolution in the complex polymer systems.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s10118-023-2891-9</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0256-7679 |
ispartof | Chinese journal of polymer science, 2023-09, Vol.41 (9), p.1377-1385 |
issn | 0256-7679 1439-6203 |
language | eng |
recordid | cdi_proquest_journals_2858666077 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Block copolymers Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Condensed Matter Physics Evolution Field theory Industrial Chemistry/Chemical Engineering Machine learning Mathematical models Microstructure Neural networks Polymer Sciences Polymers Research Article Self consistent fields |
title | Inferring the Physics of Structural Evolution of Multicomponent Polymers via Machine-Learning-Accelerated Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A01%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inferring%20the%20Physics%20of%20Structural%20Evolution%20of%20Multicomponent%20Polymers%20via%20Machine-Learning-Accelerated%20Method&rft.jtitle=Chinese%20journal%20of%20polymer%20science&rft.au=Zhang,%20Kai-Hua&rft.date=2023-09-01&rft.volume=41&rft.issue=9&rft.spage=1377&rft.epage=1385&rft.pages=1377-1385&rft.issn=0256-7679&rft.eissn=1439-6203&rft_id=info:doi/10.1007/s10118-023-2891-9&rft_dat=%3Cproquest_cross%3E2858666077%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2858666077&rft_id=info:pmid/&rfr_iscdi=true |