Spread of infections in a heterogeneous moving population

We consider a model where an infection moves through a collection of particles performing independent random walks. In this model, Kesten and Sidoravicius established linear growth of the infected region when infected and susceptible particles move at the same speed. In this paper we establish a lin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2023-10, Vol.187 (1-2), p.73-131
Hauptverfasser: Dauvergne, Duncan, Sly, Allan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 131
container_issue 1-2
container_start_page 73
container_title Probability theory and related fields
container_volume 187
creator Dauvergne, Duncan
Sly, Allan
description We consider a model where an infection moves through a collection of particles performing independent random walks. In this model, Kesten and Sidoravicius established linear growth of the infected region when infected and susceptible particles move at the same speed. In this paper we establish a linear growth rate when infected and susceptible particles move at different speeds, answering an open problem from their work. Our proof combines an intricate coupling of Poisson processes with a streamlined version of a percolation model of Sidoravicius and Stauffer.
doi_str_mv 10.1007/s00440-023-01216-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2858503434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858503434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c6af0908df354392bea8cf88393a2f603ae07091c6e91e60f0655eb7f9e2c84d3</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKv_gKcFz9HJx2aToxS_oOBBPYc0ndQt7WZNdgX_e1NX8CZzmDn83hveI-SSwTUDaG4ygJRAgQsKjDNF1RGZMSk45aDkMZkBazTVULNTcpbzFqCgks-IeekTunUVQ9V2Af3Qxi6Xs3LVOw6Y4gY7jGOu9vGz7TZVH_tx5w7UOTkJbpfx4nfPydv93evikS6fH54Wt0vqBTMD9coFMKDXQdRSGL5Cp33QWhjheFAgHEIDhnmFhqGCAKqucdUEg9xruRZzcjX59il-jJgHu41j6spLy3WtaxCyzJzwifIp5pww2D61e5e-LAN7qMhOFdmS2_5UZFURiUmUC9xtMP1Z_6P6BnGAaHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858503434</pqid></control><display><type>article</type><title>Spread of infections in a heterogeneous moving population</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Dauvergne, Duncan ; Sly, Allan</creator><creatorcontrib>Dauvergne, Duncan ; Sly, Allan</creatorcontrib><description>We consider a model where an infection moves through a collection of particles performing independent random walks. In this model, Kesten and Sidoravicius established linear growth of the infected region when infected and susceptible particles move at the same speed. In this paper we establish a linear growth rate when infected and susceptible particles move at different speeds, answering an open problem from their work. Our proof combines an intricate coupling of Poisson processes with a streamlined version of a percolation model of Sidoravicius and Stauffer.</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/s00440-023-01216-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Economics ; Energy policy ; Finance ; Insurance ; Management ; Mathematical and Computational Biology ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Percolation ; Probability ; Probability Theory and Stochastic Processes ; Quantitative Finance ; Random walk ; Statistics for Business ; Theoretical</subject><ispartof>Probability theory and related fields, 2023-10, Vol.187 (1-2), p.73-131</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c6af0908df354392bea8cf88393a2f603ae07091c6e91e60f0655eb7f9e2c84d3</citedby><cites>FETCH-LOGICAL-c319t-c6af0908df354392bea8cf88393a2f603ae07091c6e91e60f0655eb7f9e2c84d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00440-023-01216-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00440-023-01216-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Dauvergne, Duncan</creatorcontrib><creatorcontrib>Sly, Allan</creatorcontrib><title>Spread of infections in a heterogeneous moving population</title><title>Probability theory and related fields</title><addtitle>Probab. Theory Relat. Fields</addtitle><description>We consider a model where an infection moves through a collection of particles performing independent random walks. In this model, Kesten and Sidoravicius established linear growth of the infected region when infected and susceptible particles move at the same speed. In this paper we establish a linear growth rate when infected and susceptible particles move at different speeds, answering an open problem from their work. Our proof combines an intricate coupling of Poisson processes with a streamlined version of a percolation model of Sidoravicius and Stauffer.</description><subject>Economics</subject><subject>Energy policy</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Percolation</subject><subject>Probability</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantitative Finance</subject><subject>Random walk</subject><subject>Statistics for Business</subject><subject>Theoretical</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1LAzEQxYMoWKv_gKcFz9HJx2aToxS_oOBBPYc0ndQt7WZNdgX_e1NX8CZzmDn83hveI-SSwTUDaG4ygJRAgQsKjDNF1RGZMSk45aDkMZkBazTVULNTcpbzFqCgks-IeekTunUVQ9V2Af3Qxi6Xs3LVOw6Y4gY7jGOu9vGz7TZVH_tx5w7UOTkJbpfx4nfPydv93evikS6fH54Wt0vqBTMD9coFMKDXQdRSGL5Cp33QWhjheFAgHEIDhnmFhqGCAKqucdUEg9xruRZzcjX59il-jJgHu41j6spLy3WtaxCyzJzwifIp5pww2D61e5e-LAN7qMhOFdmS2_5UZFURiUmUC9xtMP1Z_6P6BnGAaHw</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Dauvergne, Duncan</creator><creator>Sly, Allan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20231001</creationdate><title>Spread of infections in a heterogeneous moving population</title><author>Dauvergne, Duncan ; Sly, Allan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c6af0908df354392bea8cf88393a2f603ae07091c6e91e60f0655eb7f9e2c84d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Economics</topic><topic>Energy policy</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Percolation</topic><topic>Probability</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantitative Finance</topic><topic>Random walk</topic><topic>Statistics for Business</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dauvergne, Duncan</creatorcontrib><creatorcontrib>Sly, Allan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dauvergne, Duncan</au><au>Sly, Allan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spread of infections in a heterogeneous moving population</atitle><jtitle>Probability theory and related fields</jtitle><stitle>Probab. Theory Relat. Fields</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>187</volume><issue>1-2</issue><spage>73</spage><epage>131</epage><pages>73-131</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><abstract>We consider a model where an infection moves through a collection of particles performing independent random walks. In this model, Kesten and Sidoravicius established linear growth of the infected region when infected and susceptible particles move at the same speed. In this paper we establish a linear growth rate when infected and susceptible particles move at different speeds, answering an open problem from their work. Our proof combines an intricate coupling of Poisson processes with a streamlined version of a percolation model of Sidoravicius and Stauffer.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00440-023-01216-6</doi><tpages>59</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-8051
ispartof Probability theory and related fields, 2023-10, Vol.187 (1-2), p.73-131
issn 0178-8051
1432-2064
language eng
recordid cdi_proquest_journals_2858503434
source Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Economics
Energy policy
Finance
Insurance
Management
Mathematical and Computational Biology
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Percolation
Probability
Probability Theory and Stochastic Processes
Quantitative Finance
Random walk
Statistics for Business
Theoretical
title Spread of infections in a heterogeneous moving population
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A57%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spread%20of%20infections%20in%20a%20heterogeneous%20moving%20population&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=Dauvergne,%20Duncan&rft.date=2023-10-01&rft.volume=187&rft.issue=1-2&rft.spage=73&rft.epage=131&rft.pages=73-131&rft.issn=0178-8051&rft.eissn=1432-2064&rft_id=info:doi/10.1007/s00440-023-01216-6&rft_dat=%3Cproquest_cross%3E2858503434%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2858503434&rft_id=info:pmid/&rfr_iscdi=true