A correlation information-based spatiotemporal network for traffic flow forecasting

Traffic flow forecasting technology plays an important role in intelligent transportation systems. Based on graph neural networks and attention mechanisms, most previous works utilize the transformer architecture to discover spatiotemporal dependencies and dynamic relationships. However, they have n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2023-10, Vol.35 (28), p.21181-21199
Hauptverfasser: Zhu, Weiguo, Sun, Yongqi, Yi, Xintong, Wang, Yan, Liu, Zhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21199
container_issue 28
container_start_page 21181
container_title Neural computing & applications
container_volume 35
creator Zhu, Weiguo
Sun, Yongqi
Yi, Xintong
Wang, Yan
Liu, Zhen
description Traffic flow forecasting technology plays an important role in intelligent transportation systems. Based on graph neural networks and attention mechanisms, most previous works utilize the transformer architecture to discover spatiotemporal dependencies and dynamic relationships. However, they have not thoroughly considered correlation information among spatiotemporal sequences. In this paper, based on the maximal information coefficient, we present two elaborate spatiotemporal representations, spatial correlation information (SCorr) and temporal correlation information (TCorr). Using SCorr, we propose a correlation information-based spatiotemporal network (CorrSTN) that includes a dynamic graph neural network component for integrating correlation information into spatial structure effectively and a multi-head attention component for modeling dynamic temporal dependencies accurately. Utilizing TCorr, we explore the correlation pattern among different periodic data to identify the most relevant data, and then design an efficient data selection scheme to further enhance model performance. The experimental results on the highway traffic flow (PEMS03, PEMS04, PEMS07 and PEMS08) and metro crowd flow (HZME inflow and outflow) datasets demonstrate that CorrSTN outperforms the state-of-the-art methods in terms of predictive performance. In particular, on the HZME (outflow) dataset, our model makes significant improvements compared with the ASTGNN model by 13.2%, 15.3% and 29.3% in the metrics of MAE, RMSE and MAPE, respectively.
doi_str_mv 10.1007/s00521-023-08831-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2858501332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858501332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-20aadb3a420d72b163806573a35eaa0664d21ac286ecb74ffaef253fd3f6560a3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wisTaMPbHjLquKl4TEAlhbk8SuUtI42Kkq_p60QWLHal7n3pEuY9cCbgVAcZcAlBQcJHIwBgXHEzYTOSJHUOaUzWCRj2ed4zm7SGkDALk2asbellkVYnQtDU3osqbzIW6PPS8puTpL_WEa3LYPkdqsc8M-xM9sxLIhkvdNlfk27A8LV1Eamm59yc48tcld_dY5-3i4f1898ZfXx-fV8oVXKBYDl0BUl0i5hLqQpdBoQKsCCZUjAq3zWgqqpNGuKovce3JeKvQ1eq00EM7ZzeTbx_C1c2mwm7CL3fjSSqOMAoEoR0pOVBVDStF528dmS_HbCrCH8OwUnh3Ds8fwLI4inERphLu1i3_W_6h-ANlOcy8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858501332</pqid></control><display><type>article</type><title>A correlation information-based spatiotemporal network for traffic flow forecasting</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhu, Weiguo ; Sun, Yongqi ; Yi, Xintong ; Wang, Yan ; Liu, Zhen</creator><creatorcontrib>Zhu, Weiguo ; Sun, Yongqi ; Yi, Xintong ; Wang, Yan ; Liu, Zhen</creatorcontrib><description>Traffic flow forecasting technology plays an important role in intelligent transportation systems. Based on graph neural networks and attention mechanisms, most previous works utilize the transformer architecture to discover spatiotemporal dependencies and dynamic relationships. However, they have not thoroughly considered correlation information among spatiotemporal sequences. In this paper, based on the maximal information coefficient, we present two elaborate spatiotemporal representations, spatial correlation information (SCorr) and temporal correlation information (TCorr). Using SCorr, we propose a correlation information-based spatiotemporal network (CorrSTN) that includes a dynamic graph neural network component for integrating correlation information into spatial structure effectively and a multi-head attention component for modeling dynamic temporal dependencies accurately. Utilizing TCorr, we explore the correlation pattern among different periodic data to identify the most relevant data, and then design an efficient data selection scheme to further enhance model performance. The experimental results on the highway traffic flow (PEMS03, PEMS04, PEMS07 and PEMS08) and metro crowd flow (HZME inflow and outflow) datasets demonstrate that CorrSTN outperforms the state-of-the-art methods in terms of predictive performance. In particular, on the HZME (outflow) dataset, our model makes significant improvements compared with the ASTGNN model by 13.2%, 15.3% and 29.3% in the metrics of MAE, RMSE and MAPE, respectively.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-023-08831-3</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Correlation ; Data Mining and Knowledge Discovery ; Datasets ; Forecasting ; Graph neural networks ; Image Processing and Computer Vision ; Intelligent transportation systems ; Mathematical models ; Neural networks ; Original Article ; Outflow ; Performance prediction ; Probability and Statistics in Computer Science ; Traffic flow ; Traffic information ; Transportation networks</subject><ispartof>Neural computing &amp; applications, 2023-10, Vol.35 (28), p.21181-21199</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-20aadb3a420d72b163806573a35eaa0664d21ac286ecb74ffaef253fd3f6560a3</citedby><cites>FETCH-LOGICAL-c319t-20aadb3a420d72b163806573a35eaa0664d21ac286ecb74ffaef253fd3f6560a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-023-08831-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-023-08831-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhu, Weiguo</creatorcontrib><creatorcontrib>Sun, Yongqi</creatorcontrib><creatorcontrib>Yi, Xintong</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Liu, Zhen</creatorcontrib><title>A correlation information-based spatiotemporal network for traffic flow forecasting</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>Traffic flow forecasting technology plays an important role in intelligent transportation systems. Based on graph neural networks and attention mechanisms, most previous works utilize the transformer architecture to discover spatiotemporal dependencies and dynamic relationships. However, they have not thoroughly considered correlation information among spatiotemporal sequences. In this paper, based on the maximal information coefficient, we present two elaborate spatiotemporal representations, spatial correlation information (SCorr) and temporal correlation information (TCorr). Using SCorr, we propose a correlation information-based spatiotemporal network (CorrSTN) that includes a dynamic graph neural network component for integrating correlation information into spatial structure effectively and a multi-head attention component for modeling dynamic temporal dependencies accurately. Utilizing TCorr, we explore the correlation pattern among different periodic data to identify the most relevant data, and then design an efficient data selection scheme to further enhance model performance. The experimental results on the highway traffic flow (PEMS03, PEMS04, PEMS07 and PEMS08) and metro crowd flow (HZME inflow and outflow) datasets demonstrate that CorrSTN outperforms the state-of-the-art methods in terms of predictive performance. In particular, on the HZME (outflow) dataset, our model makes significant improvements compared with the ASTGNN model by 13.2%, 15.3% and 29.3% in the metrics of MAE, RMSE and MAPE, respectively.</description><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Correlation</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Datasets</subject><subject>Forecasting</subject><subject>Graph neural networks</subject><subject>Image Processing and Computer Vision</subject><subject>Intelligent transportation systems</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Outflow</subject><subject>Performance prediction</subject><subject>Probability and Statistics in Computer Science</subject><subject>Traffic flow</subject><subject>Traffic information</subject><subject>Transportation networks</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wisTaMPbHjLquKl4TEAlhbk8SuUtI42Kkq_p60QWLHal7n3pEuY9cCbgVAcZcAlBQcJHIwBgXHEzYTOSJHUOaUzWCRj2ed4zm7SGkDALk2asbellkVYnQtDU3osqbzIW6PPS8puTpL_WEa3LYPkdqsc8M-xM9sxLIhkvdNlfk27A8LV1Eamm59yc48tcld_dY5-3i4f1898ZfXx-fV8oVXKBYDl0BUl0i5hLqQpdBoQKsCCZUjAq3zWgqqpNGuKovce3JeKvQ1eq00EM7ZzeTbx_C1c2mwm7CL3fjSSqOMAoEoR0pOVBVDStF528dmS_HbCrCH8OwUnh3Ds8fwLI4inERphLu1i3_W_6h-ANlOcy8</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Zhu, Weiguo</creator><creator>Sun, Yongqi</creator><creator>Yi, Xintong</creator><creator>Wang, Yan</creator><creator>Liu, Zhen</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20231001</creationdate><title>A correlation information-based spatiotemporal network for traffic flow forecasting</title><author>Zhu, Weiguo ; Sun, Yongqi ; Yi, Xintong ; Wang, Yan ; Liu, Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-20aadb3a420d72b163806573a35eaa0664d21ac286ecb74ffaef253fd3f6560a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Correlation</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Datasets</topic><topic>Forecasting</topic><topic>Graph neural networks</topic><topic>Image Processing and Computer Vision</topic><topic>Intelligent transportation systems</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Outflow</topic><topic>Performance prediction</topic><topic>Probability and Statistics in Computer Science</topic><topic>Traffic flow</topic><topic>Traffic information</topic><topic>Transportation networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Weiguo</creatorcontrib><creatorcontrib>Sun, Yongqi</creatorcontrib><creatorcontrib>Yi, Xintong</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Liu, Zhen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Weiguo</au><au>Sun, Yongqi</au><au>Yi, Xintong</au><au>Wang, Yan</au><au>Liu, Zhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A correlation information-based spatiotemporal network for traffic flow forecasting</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>35</volume><issue>28</issue><spage>21181</spage><epage>21199</epage><pages>21181-21199</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Traffic flow forecasting technology plays an important role in intelligent transportation systems. Based on graph neural networks and attention mechanisms, most previous works utilize the transformer architecture to discover spatiotemporal dependencies and dynamic relationships. However, they have not thoroughly considered correlation information among spatiotemporal sequences. In this paper, based on the maximal information coefficient, we present two elaborate spatiotemporal representations, spatial correlation information (SCorr) and temporal correlation information (TCorr). Using SCorr, we propose a correlation information-based spatiotemporal network (CorrSTN) that includes a dynamic graph neural network component for integrating correlation information into spatial structure effectively and a multi-head attention component for modeling dynamic temporal dependencies accurately. Utilizing TCorr, we explore the correlation pattern among different periodic data to identify the most relevant data, and then design an efficient data selection scheme to further enhance model performance. The experimental results on the highway traffic flow (PEMS03, PEMS04, PEMS07 and PEMS08) and metro crowd flow (HZME inflow and outflow) datasets demonstrate that CorrSTN outperforms the state-of-the-art methods in terms of predictive performance. In particular, on the HZME (outflow) dataset, our model makes significant improvements compared with the ASTGNN model by 13.2%, 15.3% and 29.3% in the metrics of MAE, RMSE and MAPE, respectively.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-023-08831-3</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2023-10, Vol.35 (28), p.21181-21199
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2858501332
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Correlation
Data Mining and Knowledge Discovery
Datasets
Forecasting
Graph neural networks
Image Processing and Computer Vision
Intelligent transportation systems
Mathematical models
Neural networks
Original Article
Outflow
Performance prediction
Probability and Statistics in Computer Science
Traffic flow
Traffic information
Transportation networks
title A correlation information-based spatiotemporal network for traffic flow forecasting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A00%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20correlation%20information-based%20spatiotemporal%20network%20for%20traffic%20flow%20forecasting&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Zhu,%20Weiguo&rft.date=2023-10-01&rft.volume=35&rft.issue=28&rft.spage=21181&rft.epage=21199&rft.pages=21181-21199&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-023-08831-3&rft_dat=%3Cproquest_cross%3E2858501332%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2858501332&rft_id=info:pmid/&rfr_iscdi=true