Federated Learning Intellectual Capital Platform
In the era of artificial intelligence, trained neural network models have become new products of the information age. Most of machine learning strategies currently used to train neural networks are supervised learning, and thus, training data with labels become new intellectual capital (IC). Due to...
Gespeichert in:
Veröffentlicht in: | Personal and ubiquitous computing 2023-08, Vol.27 (4), p.1525-1536 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1536 |
---|---|
container_issue | 4 |
container_start_page | 1525 |
container_title | Personal and ubiquitous computing |
container_volume | 27 |
creator | He, Chengying Xiao, Bin Chen, Xi Xu, Qingzhen Lin, Jianwu |
description | In the era of artificial intelligence, trained neural network models have become new products of the information age. Most of machine learning strategies currently used to train neural networks are supervised learning, and thus, training data with labels become new intellectual capital (IC). Due to commercial confidentiality, data cannot be shared directly among information companies, which in turn prevents them from integrating resources to train better models. We need a framework that encrypts neural network models trained on the data and provides certain model exchange rewards that can be used to incentivize data sharing and to protect intellectual property (IP) and privacy of intellectual capital. Currently, federated learning provides a framework to train neural networks without compromising privacy, while block chain–based trading systems can attract other participants through a reward mechanism set by smart contracts. In this paper, we propose a block chain–based federated learning algorithm that enables reliable data sharing while protecting data from leakage, and design smart contracts based on the incentive mechanism of Shapley Values to reward data providers. We design a platform for managing IC by combining federated learning and block chain called Federated Learning Intellectual Capital Platform (FedLICP). |
doi_str_mv | 10.1007/s00779-021-01590-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2858499891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858499891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2701-81bc799e780ba9eefff8f08d5d58e1b2c54176e9944918ca2edfa149ceece4123</originalsourceid><addsrcrecordid>eNp9kDFPAzEMhSMEEqXwB5gqMQfsNNfEI6ooVKoEA8xRmnOqVte7klwH_j2BQ7Cx-Hl4z376hLhGuEUAc5fLMCRBoQSsCCSdiBHO0EhNaE5_d6BzcZHzDgDNTM9GAhZcc_I915MV-9Ru281k2fbcNBz6o28mc3_Y9kVfGt_HLu0vxVn0TearHx2Lt8XD6_xJrp4fl_P7lQzKAEqL62CI2FhYe2KOMdoItq7qyjKuVah0acBEuhS0wSuuo0dNgTmwRjUdi5vh7iF170fOvdt1x9SWl07ZymoiS1hcanCF1OWcOLpD2u59-nAI7ouMG8i4QsZ9k3FUQtMhlIu53XD6O_1P6hNX1mW7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858499891</pqid></control><display><type>article</type><title>Federated Learning Intellectual Capital Platform</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>He, Chengying ; Xiao, Bin ; Chen, Xi ; Xu, Qingzhen ; Lin, Jianwu</creator><creatorcontrib>He, Chengying ; Xiao, Bin ; Chen, Xi ; Xu, Qingzhen ; Lin, Jianwu</creatorcontrib><description>In the era of artificial intelligence, trained neural network models have become new products of the information age. Most of machine learning strategies currently used to train neural networks are supervised learning, and thus, training data with labels become new intellectual capital (IC). Due to commercial confidentiality, data cannot be shared directly among information companies, which in turn prevents them from integrating resources to train better models. We need a framework that encrypts neural network models trained on the data and provides certain model exchange rewards that can be used to incentivize data sharing and to protect intellectual property (IP) and privacy of intellectual capital. Currently, federated learning provides a framework to train neural networks without compromising privacy, while block chain–based trading systems can attract other participants through a reward mechanism set by smart contracts. In this paper, we propose a block chain–based federated learning algorithm that enables reliable data sharing while protecting data from leakage, and design smart contracts based on the incentive mechanism of Shapley Values to reward data providers. We design a platform for managing IC by combining federated learning and block chain called Federated Learning Intellectual Capital Platform (FedLICP).</description><identifier>ISSN: 1617-4909</identifier><identifier>EISSN: 1617-4917</identifier><identifier>DOI: 10.1007/s00779-021-01590-9</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial intelligence ; Blockchain ; Computer Science ; Contracts ; Cryptography ; Federated learning ; Information sharing ; Intellectual capital ; Intellectual property ; Machine learning ; Mobile Computing ; Neural networks ; Original Paper ; Personal Computing ; Privacy ; Supervised learning ; User Interfaces and Human Computer Interaction</subject><ispartof>Personal and ubiquitous computing, 2023-08, Vol.27 (4), p.1525-1536</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2701-81bc799e780ba9eefff8f08d5d58e1b2c54176e9944918ca2edfa149ceece4123</citedby><cites>FETCH-LOGICAL-c2701-81bc799e780ba9eefff8f08d5d58e1b2c54176e9944918ca2edfa149ceece4123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00779-021-01590-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00779-021-01590-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>He, Chengying</creatorcontrib><creatorcontrib>Xiao, Bin</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Xu, Qingzhen</creatorcontrib><creatorcontrib>Lin, Jianwu</creatorcontrib><title>Federated Learning Intellectual Capital Platform</title><title>Personal and ubiquitous computing</title><addtitle>Pers Ubiquit Comput</addtitle><description>In the era of artificial intelligence, trained neural network models have become new products of the information age. Most of machine learning strategies currently used to train neural networks are supervised learning, and thus, training data with labels become new intellectual capital (IC). Due to commercial confidentiality, data cannot be shared directly among information companies, which in turn prevents them from integrating resources to train better models. We need a framework that encrypts neural network models trained on the data and provides certain model exchange rewards that can be used to incentivize data sharing and to protect intellectual property (IP) and privacy of intellectual capital. Currently, federated learning provides a framework to train neural networks without compromising privacy, while block chain–based trading systems can attract other participants through a reward mechanism set by smart contracts. In this paper, we propose a block chain–based federated learning algorithm that enables reliable data sharing while protecting data from leakage, and design smart contracts based on the incentive mechanism of Shapley Values to reward data providers. We design a platform for managing IC by combining federated learning and block chain called Federated Learning Intellectual Capital Platform (FedLICP).</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Blockchain</subject><subject>Computer Science</subject><subject>Contracts</subject><subject>Cryptography</subject><subject>Federated learning</subject><subject>Information sharing</subject><subject>Intellectual capital</subject><subject>Intellectual property</subject><subject>Machine learning</subject><subject>Mobile Computing</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Personal Computing</subject><subject>Privacy</subject><subject>Supervised learning</subject><subject>User Interfaces and Human Computer Interaction</subject><issn>1617-4909</issn><issn>1617-4917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kDFPAzEMhSMEEqXwB5gqMQfsNNfEI6ooVKoEA8xRmnOqVte7klwH_j2BQ7Cx-Hl4z376hLhGuEUAc5fLMCRBoQSsCCSdiBHO0EhNaE5_d6BzcZHzDgDNTM9GAhZcc_I915MV-9Ru281k2fbcNBz6o28mc3_Y9kVfGt_HLu0vxVn0TearHx2Lt8XD6_xJrp4fl_P7lQzKAEqL62CI2FhYe2KOMdoItq7qyjKuVah0acBEuhS0wSuuo0dNgTmwRjUdi5vh7iF170fOvdt1x9SWl07ZymoiS1hcanCF1OWcOLpD2u59-nAI7ouMG8i4QsZ9k3FUQtMhlIu53XD6O_1P6hNX1mW7</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>He, Chengying</creator><creator>Xiao, Bin</creator><creator>Chen, Xi</creator><creator>Xu, Qingzhen</creator><creator>Lin, Jianwu</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20230801</creationdate><title>Federated Learning Intellectual Capital Platform</title><author>He, Chengying ; Xiao, Bin ; Chen, Xi ; Xu, Qingzhen ; Lin, Jianwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2701-81bc799e780ba9eefff8f08d5d58e1b2c54176e9944918ca2edfa149ceece4123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Blockchain</topic><topic>Computer Science</topic><topic>Contracts</topic><topic>Cryptography</topic><topic>Federated learning</topic><topic>Information sharing</topic><topic>Intellectual capital</topic><topic>Intellectual property</topic><topic>Machine learning</topic><topic>Mobile Computing</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Personal Computing</topic><topic>Privacy</topic><topic>Supervised learning</topic><topic>User Interfaces and Human Computer Interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Chengying</creatorcontrib><creatorcontrib>Xiao, Bin</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Xu, Qingzhen</creatorcontrib><creatorcontrib>Lin, Jianwu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Personal and ubiquitous computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Chengying</au><au>Xiao, Bin</au><au>Chen, Xi</au><au>Xu, Qingzhen</au><au>Lin, Jianwu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Federated Learning Intellectual Capital Platform</atitle><jtitle>Personal and ubiquitous computing</jtitle><stitle>Pers Ubiquit Comput</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>27</volume><issue>4</issue><spage>1525</spage><epage>1536</epage><pages>1525-1536</pages><issn>1617-4909</issn><eissn>1617-4917</eissn><abstract>In the era of artificial intelligence, trained neural network models have become new products of the information age. Most of machine learning strategies currently used to train neural networks are supervised learning, and thus, training data with labels become new intellectual capital (IC). Due to commercial confidentiality, data cannot be shared directly among information companies, which in turn prevents them from integrating resources to train better models. We need a framework that encrypts neural network models trained on the data and provides certain model exchange rewards that can be used to incentivize data sharing and to protect intellectual property (IP) and privacy of intellectual capital. Currently, federated learning provides a framework to train neural networks without compromising privacy, while block chain–based trading systems can attract other participants through a reward mechanism set by smart contracts. In this paper, we propose a block chain–based federated learning algorithm that enables reliable data sharing while protecting data from leakage, and design smart contracts based on the incentive mechanism of Shapley Values to reward data providers. We design a platform for managing IC by combining federated learning and block chain called Federated Learning Intellectual Capital Platform (FedLICP).</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00779-021-01590-9</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1617-4909 |
ispartof | Personal and ubiquitous computing, 2023-08, Vol.27 (4), p.1525-1536 |
issn | 1617-4909 1617-4917 |
language | eng |
recordid | cdi_proquest_journals_2858499891 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Algorithms Artificial intelligence Blockchain Computer Science Contracts Cryptography Federated learning Information sharing Intellectual capital Intellectual property Machine learning Mobile Computing Neural networks Original Paper Personal Computing Privacy Supervised learning User Interfaces and Human Computer Interaction |
title | Federated Learning Intellectual Capital Platform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T03%3A27%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Federated%20Learning%20Intellectual%20Capital%20Platform&rft.jtitle=Personal%20and%20ubiquitous%20computing&rft.au=He,%20Chengying&rft.date=2023-08-01&rft.volume=27&rft.issue=4&rft.spage=1525&rft.epage=1536&rft.pages=1525-1536&rft.issn=1617-4909&rft.eissn=1617-4917&rft_id=info:doi/10.1007/s00779-021-01590-9&rft_dat=%3Cproquest_cross%3E2858499891%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2858499891&rft_id=info:pmid/&rfr_iscdi=true |