A block backward differentiation formula for solving fractional pharmacokinetics model

In this paper, an implicit fractional Block Backward Differentiation Formula is proposed for the numerical solution of the fractional pharmacokinetics model. The derivation is based on the Linear Multistep Method associated with the linear difference operator. Taylor's series expansion is consi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Noor, Nursyazwani Mohamad, Yatim, Siti Ainor Mohd
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2880
creator Noor, Nursyazwani Mohamad
Yatim, Siti Ainor Mohd
description In this paper, an implicit fractional Block Backward Differentiation Formula is proposed for the numerical solution of the fractional pharmacokinetics model. The derivation is based on the Linear Multistep Method associated with the linear difference operator. Taylor's series expansion is considered in this study to obtain the coefficient values of the derived method. Numerical simulations are provided for different parameter settings of the order of derivatives, α and it is observed that the proposed method follows the behaviour of the basic graph when α is approaching 1. Therefore, the proposed method can be an alternative solver to solve the fractional model.
doi_str_mv 10.1063/5.0165666
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2858466278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858466278</sourcerecordid><originalsourceid>FETCH-LOGICAL-p964-c5b482c295b3f231be246a1f8185748940652fa2d67afad6491c5ea47870f6a23</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKsH_0HAm7A1ySZvssdS_IKClyLelneziabd3dRkq_jvtbanOczDMDOEXHM24wzKOzVjHBQAnJAJV4oXGjickgljlSyELN_OyUXOa8ZEpbWZkNc5bbpoN7RBu_nG1NI2eO-SG8aAY4gD9TH1uw73SnPsvsLwTn1Cuzexo9sPTD3auAmDG4PNtI-t6y7Jmccuu6ujTsnq4X61eCqWL4_Pi_my2FYgC6saaYQVlWpKL0reOCEBuTfcKC1NJRko4VG0oNFjC7LiVjmU2mjmAUU5JTeH2G2KnzuXx3odd-mvVq6FUUYCCG3-qNsDlW0Y_0fV2xR6TD81Z_X-tlrVx9vKX_qSX2k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2858466278</pqid></control><display><type>conference_proceeding</type><title>A block backward differentiation formula for solving fractional pharmacokinetics model</title><source>AIP Journals Complete</source><creator>Noor, Nursyazwani Mohamad ; Yatim, Siti Ainor Mohd</creator><contributor>Ibrahim, Mohd Lukman Inche ; Daoud, Jamal I.</contributor><creatorcontrib>Noor, Nursyazwani Mohamad ; Yatim, Siti Ainor Mohd ; Ibrahim, Mohd Lukman Inche ; Daoud, Jamal I.</creatorcontrib><description>In this paper, an implicit fractional Block Backward Differentiation Formula is proposed for the numerical solution of the fractional pharmacokinetics model. The derivation is based on the Linear Multistep Method associated with the linear difference operator. Taylor's series expansion is considered in this study to obtain the coefficient values of the derived method. Numerical simulations are provided for different parameter settings of the order of derivatives, α and it is observed that the proposed method follows the behaviour of the basic graph when α is approaching 1. Therefore, the proposed method can be an alternative solver to solve the fractional model.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0165666</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Differentiation ; Finite differences ; Mathematical models ; Operators (mathematics) ; Pharmacokinetics ; Series expansion ; Taylor series</subject><ispartof>AIP conference proceedings, 2023, Vol.2880 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0165666$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Ibrahim, Mohd Lukman Inche</contributor><contributor>Daoud, Jamal I.</contributor><creatorcontrib>Noor, Nursyazwani Mohamad</creatorcontrib><creatorcontrib>Yatim, Siti Ainor Mohd</creatorcontrib><title>A block backward differentiation formula for solving fractional pharmacokinetics model</title><title>AIP conference proceedings</title><description>In this paper, an implicit fractional Block Backward Differentiation Formula is proposed for the numerical solution of the fractional pharmacokinetics model. The derivation is based on the Linear Multistep Method associated with the linear difference operator. Taylor's series expansion is considered in this study to obtain the coefficient values of the derived method. Numerical simulations are provided for different parameter settings of the order of derivatives, α and it is observed that the proposed method follows the behaviour of the basic graph when α is approaching 1. Therefore, the proposed method can be an alternative solver to solve the fractional model.</description><subject>Differentiation</subject><subject>Finite differences</subject><subject>Mathematical models</subject><subject>Operators (mathematics)</subject><subject>Pharmacokinetics</subject><subject>Series expansion</subject><subject>Taylor series</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1LAzEYhIMoWKsH_0HAm7A1ySZvssdS_IKClyLelneziabd3dRkq_jvtbanOczDMDOEXHM24wzKOzVjHBQAnJAJV4oXGjickgljlSyELN_OyUXOa8ZEpbWZkNc5bbpoN7RBu_nG1NI2eO-SG8aAY4gD9TH1uw73SnPsvsLwTn1Cuzexo9sPTD3auAmDG4PNtI-t6y7Jmccuu6ujTsnq4X61eCqWL4_Pi_my2FYgC6saaYQVlWpKL0reOCEBuTfcKC1NJRko4VG0oNFjC7LiVjmU2mjmAUU5JTeH2G2KnzuXx3odd-mvVq6FUUYCCG3-qNsDlW0Y_0fV2xR6TD81Z_X-tlrVx9vKX_qSX2k</recordid><startdate>20230829</startdate><enddate>20230829</enddate><creator>Noor, Nursyazwani Mohamad</creator><creator>Yatim, Siti Ainor Mohd</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230829</creationdate><title>A block backward differentiation formula for solving fractional pharmacokinetics model</title><author>Noor, Nursyazwani Mohamad ; Yatim, Siti Ainor Mohd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p964-c5b482c295b3f231be246a1f8185748940652fa2d67afad6491c5ea47870f6a23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Differentiation</topic><topic>Finite differences</topic><topic>Mathematical models</topic><topic>Operators (mathematics)</topic><topic>Pharmacokinetics</topic><topic>Series expansion</topic><topic>Taylor series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noor, Nursyazwani Mohamad</creatorcontrib><creatorcontrib>Yatim, Siti Ainor Mohd</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noor, Nursyazwani Mohamad</au><au>Yatim, Siti Ainor Mohd</au><au>Ibrahim, Mohd Lukman Inche</au><au>Daoud, Jamal I.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A block backward differentiation formula for solving fractional pharmacokinetics model</atitle><btitle>AIP conference proceedings</btitle><date>2023-08-29</date><risdate>2023</risdate><volume>2880</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this paper, an implicit fractional Block Backward Differentiation Formula is proposed for the numerical solution of the fractional pharmacokinetics model. The derivation is based on the Linear Multistep Method associated with the linear difference operator. Taylor's series expansion is considered in this study to obtain the coefficient values of the derived method. Numerical simulations are provided for different parameter settings of the order of derivatives, α and it is observed that the proposed method follows the behaviour of the basic graph when α is approaching 1. Therefore, the proposed method can be an alternative solver to solve the fractional model.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0165666</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2880 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2858466278
source AIP Journals Complete
subjects Differentiation
Finite differences
Mathematical models
Operators (mathematics)
Pharmacokinetics
Series expansion
Taylor series
title A block backward differentiation formula for solving fractional pharmacokinetics model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A30%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20block%20backward%20differentiation%20formula%20for%20solving%20fractional%20pharmacokinetics%20model&rft.btitle=AIP%20conference%20proceedings&rft.au=Noor,%20Nursyazwani%20Mohamad&rft.date=2023-08-29&rft.volume=2880&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0165666&rft_dat=%3Cproquest_scita%3E2858466278%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2858466278&rft_id=info:pmid/&rfr_iscdi=true