A block backward differentiation formula for solving fractional pharmacokinetics model
In this paper, an implicit fractional Block Backward Differentiation Formula is proposed for the numerical solution of the fractional pharmacokinetics model. The derivation is based on the Linear Multistep Method associated with the linear difference operator. Taylor's series expansion is consi...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2880 |
creator | Noor, Nursyazwani Mohamad Yatim, Siti Ainor Mohd |
description | In this paper, an implicit fractional Block Backward Differentiation Formula is proposed for the numerical solution of the fractional pharmacokinetics model. The derivation is based on the Linear Multistep Method associated with the linear difference operator. Taylor's series expansion is considered in this study to obtain the coefficient values of the derived method. Numerical simulations are provided for different parameter settings of the order of derivatives, α and it is observed that the proposed method follows the behaviour of the basic graph when α is approaching 1. Therefore, the proposed method can be an alternative solver to solve the fractional model. |
doi_str_mv | 10.1063/5.0165666 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2858466278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858466278</sourcerecordid><originalsourceid>FETCH-LOGICAL-p964-c5b482c295b3f231be246a1f8185748940652fa2d67afad6491c5ea47870f6a23</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKsH_0HAm7A1ySZvssdS_IKClyLelneziabd3dRkq_jvtbanOczDMDOEXHM24wzKOzVjHBQAnJAJV4oXGjickgljlSyELN_OyUXOa8ZEpbWZkNc5bbpoN7RBu_nG1NI2eO-SG8aAY4gD9TH1uw73SnPsvsLwTn1Cuzexo9sPTD3auAmDG4PNtI-t6y7Jmccuu6ujTsnq4X61eCqWL4_Pi_my2FYgC6saaYQVlWpKL0reOCEBuTfcKC1NJRko4VG0oNFjC7LiVjmU2mjmAUU5JTeH2G2KnzuXx3odd-mvVq6FUUYCCG3-qNsDlW0Y_0fV2xR6TD81Z_X-tlrVx9vKX_qSX2k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2858466278</pqid></control><display><type>conference_proceeding</type><title>A block backward differentiation formula for solving fractional pharmacokinetics model</title><source>AIP Journals Complete</source><creator>Noor, Nursyazwani Mohamad ; Yatim, Siti Ainor Mohd</creator><contributor>Ibrahim, Mohd Lukman Inche ; Daoud, Jamal I.</contributor><creatorcontrib>Noor, Nursyazwani Mohamad ; Yatim, Siti Ainor Mohd ; Ibrahim, Mohd Lukman Inche ; Daoud, Jamal I.</creatorcontrib><description>In this paper, an implicit fractional Block Backward Differentiation Formula is proposed for the numerical solution of the fractional pharmacokinetics model. The derivation is based on the Linear Multistep Method associated with the linear difference operator. Taylor's series expansion is considered in this study to obtain the coefficient values of the derived method. Numerical simulations are provided for different parameter settings of the order of derivatives, α and it is observed that the proposed method follows the behaviour of the basic graph when α is approaching 1. Therefore, the proposed method can be an alternative solver to solve the fractional model.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0165666</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Differentiation ; Finite differences ; Mathematical models ; Operators (mathematics) ; Pharmacokinetics ; Series expansion ; Taylor series</subject><ispartof>AIP conference proceedings, 2023, Vol.2880 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0165666$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Ibrahim, Mohd Lukman Inche</contributor><contributor>Daoud, Jamal I.</contributor><creatorcontrib>Noor, Nursyazwani Mohamad</creatorcontrib><creatorcontrib>Yatim, Siti Ainor Mohd</creatorcontrib><title>A block backward differentiation formula for solving fractional pharmacokinetics model</title><title>AIP conference proceedings</title><description>In this paper, an implicit fractional Block Backward Differentiation Formula is proposed for the numerical solution of the fractional pharmacokinetics model. The derivation is based on the Linear Multistep Method associated with the linear difference operator. Taylor's series expansion is considered in this study to obtain the coefficient values of the derived method. Numerical simulations are provided for different parameter settings of the order of derivatives, α and it is observed that the proposed method follows the behaviour of the basic graph when α is approaching 1. Therefore, the proposed method can be an alternative solver to solve the fractional model.</description><subject>Differentiation</subject><subject>Finite differences</subject><subject>Mathematical models</subject><subject>Operators (mathematics)</subject><subject>Pharmacokinetics</subject><subject>Series expansion</subject><subject>Taylor series</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1LAzEYhIMoWKsH_0HAm7A1ySZvssdS_IKClyLelneziabd3dRkq_jvtbanOczDMDOEXHM24wzKOzVjHBQAnJAJV4oXGjickgljlSyELN_OyUXOa8ZEpbWZkNc5bbpoN7RBu_nG1NI2eO-SG8aAY4gD9TH1uw73SnPsvsLwTn1Cuzexo9sPTD3auAmDG4PNtI-t6y7Jmccuu6ujTsnq4X61eCqWL4_Pi_my2FYgC6saaYQVlWpKL0reOCEBuTfcKC1NJRko4VG0oNFjC7LiVjmU2mjmAUU5JTeH2G2KnzuXx3odd-mvVq6FUUYCCG3-qNsDlW0Y_0fV2xR6TD81Z_X-tlrVx9vKX_qSX2k</recordid><startdate>20230829</startdate><enddate>20230829</enddate><creator>Noor, Nursyazwani Mohamad</creator><creator>Yatim, Siti Ainor Mohd</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230829</creationdate><title>A block backward differentiation formula for solving fractional pharmacokinetics model</title><author>Noor, Nursyazwani Mohamad ; Yatim, Siti Ainor Mohd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p964-c5b482c295b3f231be246a1f8185748940652fa2d67afad6491c5ea47870f6a23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Differentiation</topic><topic>Finite differences</topic><topic>Mathematical models</topic><topic>Operators (mathematics)</topic><topic>Pharmacokinetics</topic><topic>Series expansion</topic><topic>Taylor series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noor, Nursyazwani Mohamad</creatorcontrib><creatorcontrib>Yatim, Siti Ainor Mohd</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noor, Nursyazwani Mohamad</au><au>Yatim, Siti Ainor Mohd</au><au>Ibrahim, Mohd Lukman Inche</au><au>Daoud, Jamal I.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A block backward differentiation formula for solving fractional pharmacokinetics model</atitle><btitle>AIP conference proceedings</btitle><date>2023-08-29</date><risdate>2023</risdate><volume>2880</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this paper, an implicit fractional Block Backward Differentiation Formula is proposed for the numerical solution of the fractional pharmacokinetics model. The derivation is based on the Linear Multistep Method associated with the linear difference operator. Taylor's series expansion is considered in this study to obtain the coefficient values of the derived method. Numerical simulations are provided for different parameter settings of the order of derivatives, α and it is observed that the proposed method follows the behaviour of the basic graph when α is approaching 1. Therefore, the proposed method can be an alternative solver to solve the fractional model.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0165666</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2023, Vol.2880 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2858466278 |
source | AIP Journals Complete |
subjects | Differentiation Finite differences Mathematical models Operators (mathematics) Pharmacokinetics Series expansion Taylor series |
title | A block backward differentiation formula for solving fractional pharmacokinetics model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A30%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20block%20backward%20differentiation%20formula%20for%20solving%20fractional%20pharmacokinetics%20model&rft.btitle=AIP%20conference%20proceedings&rft.au=Noor,%20Nursyazwani%20Mohamad&rft.date=2023-08-29&rft.volume=2880&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0165666&rft_dat=%3Cproquest_scita%3E2858466278%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2858466278&rft_id=info:pmid/&rfr_iscdi=true |