Adversarial Sample Generation Method Based on Global Convolution Noise Reduction Model

Residual network is a deep learning model widely used in various applications of computer vision, such as image processing, semantic classification and video processing. The traditional residual network is susceptible to the interference induced by the adversarial example attack algorithms, which di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatic control and computer sciences 2023-08, Vol.57 (4), p.389-399
1. Verfasser: Cai, Aiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 399
container_issue 4
container_start_page 389
container_title Automatic control and computer sciences
container_volume 57
creator Cai, Aiping
description Residual network is a deep learning model widely used in various applications of computer vision, such as image processing, semantic classification and video processing. The traditional residual network is susceptible to the interference induced by the adversarial example attack algorithms, which directly affects the security of practical applications. In this work, we propose a new residual neural network based on a global convolutional denoising model. The global convolution is fused with the denoising technique, and the network structure of the global convolution denoising module is redesigned so that the denoising module can be trained end-to-end with the residual neural network. In addition, the gradient information of the network is concealed to enable the neurons to respond to the pixels that are more meaningful to human vision, thus improving the robustness of the network for adversarial example attack algorithms.
doi_str_mv 10.3103/S0146411623040028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2857885174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2857885174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-21296d1627dfbdfa779815b62b6b60dd4edf52cc0f348b3dd8ad4ceda392a6393</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFY_gLeA5-j-y2ZzrEWjUBWsirewyUw0Jc3W3aTgt3drBA_iaRje770ZHiGnjJ4LRsXFkjKpJGOKCyop5XqPTFiS6JhR_bpPJjs53umH5Mj7FaVB02pCXmawReeNa0wbLc1602KUY4fO9I3tojvs3y1El8YjRGHPW1sGcG67rW2Hb-TeNh6jR4ShGi0WsD0mB7VpPZ78zCl5vr56mt_Ei4f8dj5bxBVXuo8545mC8HQKdQm1SdNMs6RUvFSlogASoU54VdFaSF0KAG1AVghGZNwokYkpORtzN85-DOj7YmUH14WTBddJqnXCUhkoNlKVs947rIuNa9bGfRaMFrv6ij_1BQ8fPT6w3Ru63-T_TV_5DnGm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857885174</pqid></control><display><type>article</type><title>Adversarial Sample Generation Method Based on Global Convolution Noise Reduction Model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cai, Aiping</creator><creatorcontrib>Cai, Aiping</creatorcontrib><description>Residual network is a deep learning model widely used in various applications of computer vision, such as image processing, semantic classification and video processing. The traditional residual network is susceptible to the interference induced by the adversarial example attack algorithms, which directly affects the security of practical applications. In this work, we propose a new residual neural network based on a global convolutional denoising model. The global convolution is fused with the denoising technique, and the network structure of the global convolution denoising module is redesigned so that the denoising module can be trained end-to-end with the residual neural network. In addition, the gradient information of the network is concealed to enable the neurons to respond to the pixels that are more meaningful to human vision, thus improving the robustness of the network for adversarial example attack algorithms.</description><identifier>ISSN: 0146-4116</identifier><identifier>EISSN: 1558-108X</identifier><identifier>DOI: 10.3103/S0146411623040028</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Artificial neural networks ; Computer Science ; Computer vision ; Control Structures and Microprogramming ; Convolution ; Image classification ; Image processing ; Machine learning ; Modules ; Noise reduction ; Video</subject><ispartof>Automatic control and computer sciences, 2023-08, Vol.57 (4), p.389-399</ispartof><rights>Allerton Press, Inc. 2023. ISSN 0146-4116, Automatic Control and Computer Sciences, 2023, Vol. 57, No. 4, pp. 389–399. © Allerton Press, Inc., 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-21296d1627dfbdfa779815b62b6b60dd4edf52cc0f348b3dd8ad4ceda392a6393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0146411623040028$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0146411623040028$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cai, Aiping</creatorcontrib><title>Adversarial Sample Generation Method Based on Global Convolution Noise Reduction Model</title><title>Automatic control and computer sciences</title><addtitle>Aut. Control Comp. Sci</addtitle><description>Residual network is a deep learning model widely used in various applications of computer vision, such as image processing, semantic classification and video processing. The traditional residual network is susceptible to the interference induced by the adversarial example attack algorithms, which directly affects the security of practical applications. In this work, we propose a new residual neural network based on a global convolutional denoising model. The global convolution is fused with the denoising technique, and the network structure of the global convolution denoising module is redesigned so that the denoising module can be trained end-to-end with the residual neural network. In addition, the gradient information of the network is concealed to enable the neurons to respond to the pixels that are more meaningful to human vision, thus improving the robustness of the network for adversarial example attack algorithms.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Control Structures and Microprogramming</subject><subject>Convolution</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>Modules</subject><subject>Noise reduction</subject><subject>Video</subject><issn>0146-4116</issn><issn>1558-108X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AQxRdRsFY_gLeA5-j-y2ZzrEWjUBWsirewyUw0Jc3W3aTgt3drBA_iaRje770ZHiGnjJ4LRsXFkjKpJGOKCyop5XqPTFiS6JhR_bpPJjs53umH5Mj7FaVB02pCXmawReeNa0wbLc1602KUY4fO9I3tojvs3y1El8YjRGHPW1sGcG67rW2Hb-TeNh6jR4ShGi0WsD0mB7VpPZ78zCl5vr56mt_Ei4f8dj5bxBVXuo8545mC8HQKdQm1SdNMs6RUvFSlogASoU54VdFaSF0KAG1AVghGZNwokYkpORtzN85-DOj7YmUH14WTBddJqnXCUhkoNlKVs947rIuNa9bGfRaMFrv6ij_1BQ8fPT6w3Ru63-T_TV_5DnGm</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Cai, Aiping</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230801</creationdate><title>Adversarial Sample Generation Method Based on Global Convolution Noise Reduction Model</title><author>Cai, Aiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-21296d1627dfbdfa779815b62b6b60dd4edf52cc0f348b3dd8ad4ceda392a6393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Control Structures and Microprogramming</topic><topic>Convolution</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>Modules</topic><topic>Noise reduction</topic><topic>Video</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Aiping</creatorcontrib><collection>CrossRef</collection><jtitle>Automatic control and computer sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Aiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adversarial Sample Generation Method Based on Global Convolution Noise Reduction Model</atitle><jtitle>Automatic control and computer sciences</jtitle><stitle>Aut. Control Comp. Sci</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>57</volume><issue>4</issue><spage>389</spage><epage>399</epage><pages>389-399</pages><issn>0146-4116</issn><eissn>1558-108X</eissn><abstract>Residual network is a deep learning model widely used in various applications of computer vision, such as image processing, semantic classification and video processing. The traditional residual network is susceptible to the interference induced by the adversarial example attack algorithms, which directly affects the security of practical applications. In this work, we propose a new residual neural network based on a global convolutional denoising model. The global convolution is fused with the denoising technique, and the network structure of the global convolution denoising module is redesigned so that the denoising module can be trained end-to-end with the residual neural network. In addition, the gradient information of the network is concealed to enable the neurons to respond to the pixels that are more meaningful to human vision, thus improving the robustness of the network for adversarial example attack algorithms.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0146411623040028</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0146-4116
ispartof Automatic control and computer sciences, 2023-08, Vol.57 (4), p.389-399
issn 0146-4116
1558-108X
language eng
recordid cdi_proquest_journals_2857885174
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Artificial neural networks
Computer Science
Computer vision
Control Structures and Microprogramming
Convolution
Image classification
Image processing
Machine learning
Modules
Noise reduction
Video
title Adversarial Sample Generation Method Based on Global Convolution Noise Reduction Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A44%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adversarial%20Sample%20Generation%20Method%20Based%20on%20Global%20Convolution%20Noise%20Reduction%20Model&rft.jtitle=Automatic%20control%20and%20computer%20sciences&rft.au=Cai,%20Aiping&rft.date=2023-08-01&rft.volume=57&rft.issue=4&rft.spage=389&rft.epage=399&rft.pages=389-399&rft.issn=0146-4116&rft.eissn=1558-108X&rft_id=info:doi/10.3103/S0146411623040028&rft_dat=%3Cproquest_cross%3E2857885174%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2857885174&rft_id=info:pmid/&rfr_iscdi=true