Development of a Regional F‐Region Critical Frequency Model for Southern Africa

A new localized linear regression model, called the SANSA model, is presented. The model provides a forecast of the F‐region critical frequency (foF2) over Grahamstown, South Africa (33.31°S, 26.52°E). The input parameters of this model are the maximum daily solar elevation angle, the F10.7 cm radio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Space Weather 2023-08, Vol.21 (8), p.n/a
Hauptverfasser: Brijraj, S., Cilliers, P. J., Kosch, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page
container_title Space Weather
container_volume 21
creator Brijraj, S.
Cilliers, P. J.
Kosch, M.
description A new localized linear regression model, called the SANSA model, is presented. The model provides a forecast of the F‐region critical frequency (foF2) over Grahamstown, South Africa (33.31°S, 26.52°E). The input parameters of this model are the maximum daily solar elevation angle, the F10.7 cm radio flux index and the planetary K index. The output parameter is the forecasted foF2. The historical data‐set consists of ionosonde foF2 observations made in Grahamstown for the period 2010–2019. The historical and predicted data sets used to develop the model are obtained from databases maintained by the South African National Space Agency, the National Aeronautics and Space Administration and the National Oceanic and Atmospheric Administration. The model improves on the results of the Ionospheric Communications Enhanced Profile Analysis and Circuit Prediction Program in terms of the root mean square error skill score metric. The work presented shows that a linear regression model based on the solar elevation angle as well as the F10.7 and planetary K indices can closely approximate observed foF2 magnitudes during quiet and storm times. Plain Language Summary The F‐region critical frequency (foF2) is the highest frequency that a signal can be transmitted, from the ground, and still be reflected off the lower ionosphere back to the ground. Signals with frequencies above the foF2 will penetrate the ionosphere and propagate into space, thus all information coded within that signal will be lost to space. The work presented here aims to demonstrate that a foF2 forecast model can be developed by combining the F10.7 cm radio flux index, local maximum daily solar elevation angle and the planetary K‐index. We based our model on analyzing the historical foF2 variation measured between 2010 and 2019 above Grahamstown, South Africa. The historical and predicted data sets used to develop the model are obtained from databases maintained by the South African National Space Agency, the National Aeronautics and Space Administration and the National Oceanic and Atmospheric Administration. The proposed model improves on the results of the Ionospheric Communications Enhanced Profile Analysis and Circuit Prediction Program in terms of the root mean square error skill score metric. Key Points We present a methodology for deriving a regional foF2 model for Grahamstown, South Africa The model used hourly foF2 ionosonde data measured over a decade, the F10.7 index, maximum daily solar el
doi_str_mv 10.1029/2023SW003482
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2857874888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2857874888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3015-8717849749f9e72e05ea5a5a22459f152832a6ed80dd6f92acb1ee9abd6a1baa3</originalsourceid><addsrcrecordid>eNp9kM9KAzEQh4MoWKs3HyDg1dVkknSTY6mtChXRKj2GdHeiW7abmt0qvfkIPqNP4pb14EnmMH_4GD5-hJxydsEZmEtgIGZzxoTUsEd6XElIUmHY_p_5kBzV9ZIxkApkjzxc4TuWYb3CqqHBU0cf8aUIlSvp5Pvzq1voKBZNke1uEd82WGVbehdyLKkPkc7CpnnFWNGhjy10TA68K2s8-e198jwZP41ukun99e1oOE0ywbhKdMpTLU0qjTeYAjKFTrUFrZjxXIEW4AaYa5bnA2_AZQuOaNwiHzi-cE70yVn3dx1D61Q3dhk2sRWvLWiV6lRqrVvqvKOyGOo6orfrWKxc3FrO7C40-ze0FocO_yhK3P7L2tl8DFwpJX4AvUNtqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857874888</pqid></control><display><type>article</type><title>Development of a Regional F‐Region Critical Frequency Model for Southern Africa</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><creator>Brijraj, S. ; Cilliers, P. J. ; Kosch, M.</creator><creatorcontrib>Brijraj, S. ; Cilliers, P. J. ; Kosch, M.</creatorcontrib><description>A new localized linear regression model, called the SANSA model, is presented. The model provides a forecast of the F‐region critical frequency (foF2) over Grahamstown, South Africa (33.31°S, 26.52°E). The input parameters of this model are the maximum daily solar elevation angle, the F10.7 cm radio flux index and the planetary K index. The output parameter is the forecasted foF2. The historical data‐set consists of ionosonde foF2 observations made in Grahamstown for the period 2010–2019. The historical and predicted data sets used to develop the model are obtained from databases maintained by the South African National Space Agency, the National Aeronautics and Space Administration and the National Oceanic and Atmospheric Administration. The model improves on the results of the Ionospheric Communications Enhanced Profile Analysis and Circuit Prediction Program in terms of the root mean square error skill score metric. The work presented shows that a linear regression model based on the solar elevation angle as well as the F10.7 and planetary K indices can closely approximate observed foF2 magnitudes during quiet and storm times. Plain Language Summary The F‐region critical frequency (foF2) is the highest frequency that a signal can be transmitted, from the ground, and still be reflected off the lower ionosphere back to the ground. Signals with frequencies above the foF2 will penetrate the ionosphere and propagate into space, thus all information coded within that signal will be lost to space. The work presented here aims to demonstrate that a foF2 forecast model can be developed by combining the F10.7 cm radio flux index, local maximum daily solar elevation angle and the planetary K‐index. We based our model on analyzing the historical foF2 variation measured between 2010 and 2019 above Grahamstown, South Africa. The historical and predicted data sets used to develop the model are obtained from databases maintained by the South African National Space Agency, the National Aeronautics and Space Administration and the National Oceanic and Atmospheric Administration. The proposed model improves on the results of the Ionospheric Communications Enhanced Profile Analysis and Circuit Prediction Program in terms of the root mean square error skill score metric. Key Points We present a methodology for deriving a regional foF2 model for Grahamstown, South Africa The model used hourly foF2 ionosonde data measured over a decade, the F10.7 index, maximum daily solar elevation angle and the Kp index The model showed an improvement on currently used foF2 prediction software, quantified by the root mean square error skill score metric</description><identifier>ISSN: 1542-7390</identifier><identifier>ISSN: 1539-4964</identifier><identifier>EISSN: 1542-7390</identifier><identifier>DOI: 10.1029/2023SW003482</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Aeronautics ; Circuits ; critical frequency ; Datasets ; Elevation angle ; foF2 ; forecast ; Ionosondes ; Ionosphere ; Lower ionosphere ; Mean square errors ; modeling ; Modelling ; Parameters ; Radio ; Regional development ; Regression analysis ; Regression models ; Root-mean-square errors ; space‐weather</subject><ispartof>Space Weather, 2023-08, Vol.21 (8), p.n/a</ispartof><rights>2023. The Authors.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3015-8717849749f9e72e05ea5a5a22459f152832a6ed80dd6f92acb1ee9abd6a1baa3</cites><orcidid>0000-0002-0106-5709 ; 0000-0003-3175-5134 ; 0000-0003-2846-3915</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2023SW003482$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2023SW003482$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,11567,27929,27930,45579,45580,46057,46481</link.rule.ids></links><search><creatorcontrib>Brijraj, S.</creatorcontrib><creatorcontrib>Cilliers, P. J.</creatorcontrib><creatorcontrib>Kosch, M.</creatorcontrib><title>Development of a Regional F‐Region Critical Frequency Model for Southern Africa</title><title>Space Weather</title><description>A new localized linear regression model, called the SANSA model, is presented. The model provides a forecast of the F‐region critical frequency (foF2) over Grahamstown, South Africa (33.31°S, 26.52°E). The input parameters of this model are the maximum daily solar elevation angle, the F10.7 cm radio flux index and the planetary K index. The output parameter is the forecasted foF2. The historical data‐set consists of ionosonde foF2 observations made in Grahamstown for the period 2010–2019. The historical and predicted data sets used to develop the model are obtained from databases maintained by the South African National Space Agency, the National Aeronautics and Space Administration and the National Oceanic and Atmospheric Administration. The model improves on the results of the Ionospheric Communications Enhanced Profile Analysis and Circuit Prediction Program in terms of the root mean square error skill score metric. The work presented shows that a linear regression model based on the solar elevation angle as well as the F10.7 and planetary K indices can closely approximate observed foF2 magnitudes during quiet and storm times. Plain Language Summary The F‐region critical frequency (foF2) is the highest frequency that a signal can be transmitted, from the ground, and still be reflected off the lower ionosphere back to the ground. Signals with frequencies above the foF2 will penetrate the ionosphere and propagate into space, thus all information coded within that signal will be lost to space. The work presented here aims to demonstrate that a foF2 forecast model can be developed by combining the F10.7 cm radio flux index, local maximum daily solar elevation angle and the planetary K‐index. We based our model on analyzing the historical foF2 variation measured between 2010 and 2019 above Grahamstown, South Africa. The historical and predicted data sets used to develop the model are obtained from databases maintained by the South African National Space Agency, the National Aeronautics and Space Administration and the National Oceanic and Atmospheric Administration. The proposed model improves on the results of the Ionospheric Communications Enhanced Profile Analysis and Circuit Prediction Program in terms of the root mean square error skill score metric. Key Points We present a methodology for deriving a regional foF2 model for Grahamstown, South Africa The model used hourly foF2 ionosonde data measured over a decade, the F10.7 index, maximum daily solar elevation angle and the Kp index The model showed an improvement on currently used foF2 prediction software, quantified by the root mean square error skill score metric</description><subject>Aeronautics</subject><subject>Circuits</subject><subject>critical frequency</subject><subject>Datasets</subject><subject>Elevation angle</subject><subject>foF2</subject><subject>forecast</subject><subject>Ionosondes</subject><subject>Ionosphere</subject><subject>Lower ionosphere</subject><subject>Mean square errors</subject><subject>modeling</subject><subject>Modelling</subject><subject>Parameters</subject><subject>Radio</subject><subject>Regional development</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Root-mean-square errors</subject><subject>space‐weather</subject><issn>1542-7390</issn><issn>1539-4964</issn><issn>1542-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kM9KAzEQh4MoWKs3HyDg1dVkknSTY6mtChXRKj2GdHeiW7abmt0qvfkIPqNP4pb14EnmMH_4GD5-hJxydsEZmEtgIGZzxoTUsEd6XElIUmHY_p_5kBzV9ZIxkApkjzxc4TuWYb3CqqHBU0cf8aUIlSvp5Pvzq1voKBZNke1uEd82WGVbehdyLKkPkc7CpnnFWNGhjy10TA68K2s8-e198jwZP41ukun99e1oOE0ywbhKdMpTLU0qjTeYAjKFTrUFrZjxXIEW4AaYa5bnA2_AZQuOaNwiHzi-cE70yVn3dx1D61Q3dhk2sRWvLWiV6lRqrVvqvKOyGOo6orfrWKxc3FrO7C40-ze0FocO_yhK3P7L2tl8DFwpJX4AvUNtqA</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>Brijraj, S.</creator><creator>Cilliers, P. J.</creator><creator>Kosch, M.</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0106-5709</orcidid><orcidid>https://orcid.org/0000-0003-3175-5134</orcidid><orcidid>https://orcid.org/0000-0003-2846-3915</orcidid></search><sort><creationdate>202308</creationdate><title>Development of a Regional F‐Region Critical Frequency Model for Southern Africa</title><author>Brijraj, S. ; Cilliers, P. J. ; Kosch, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3015-8717849749f9e72e05ea5a5a22459f152832a6ed80dd6f92acb1ee9abd6a1baa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aeronautics</topic><topic>Circuits</topic><topic>critical frequency</topic><topic>Datasets</topic><topic>Elevation angle</topic><topic>foF2</topic><topic>forecast</topic><topic>Ionosondes</topic><topic>Ionosphere</topic><topic>Lower ionosphere</topic><topic>Mean square errors</topic><topic>modeling</topic><topic>Modelling</topic><topic>Parameters</topic><topic>Radio</topic><topic>Regional development</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Root-mean-square errors</topic><topic>space‐weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brijraj, S.</creatorcontrib><creatorcontrib>Cilliers, P. J.</creatorcontrib><creatorcontrib>Kosch, M.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Space Weather</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brijraj, S.</au><au>Cilliers, P. J.</au><au>Kosch, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Regional F‐Region Critical Frequency Model for Southern Africa</atitle><jtitle>Space Weather</jtitle><date>2023-08</date><risdate>2023</risdate><volume>21</volume><issue>8</issue><epage>n/a</epage><issn>1542-7390</issn><issn>1539-4964</issn><eissn>1542-7390</eissn><abstract>A new localized linear regression model, called the SANSA model, is presented. The model provides a forecast of the F‐region critical frequency (foF2) over Grahamstown, South Africa (33.31°S, 26.52°E). The input parameters of this model are the maximum daily solar elevation angle, the F10.7 cm radio flux index and the planetary K index. The output parameter is the forecasted foF2. The historical data‐set consists of ionosonde foF2 observations made in Grahamstown for the period 2010–2019. The historical and predicted data sets used to develop the model are obtained from databases maintained by the South African National Space Agency, the National Aeronautics and Space Administration and the National Oceanic and Atmospheric Administration. The model improves on the results of the Ionospheric Communications Enhanced Profile Analysis and Circuit Prediction Program in terms of the root mean square error skill score metric. The work presented shows that a linear regression model based on the solar elevation angle as well as the F10.7 and planetary K indices can closely approximate observed foF2 magnitudes during quiet and storm times. Plain Language Summary The F‐region critical frequency (foF2) is the highest frequency that a signal can be transmitted, from the ground, and still be reflected off the lower ionosphere back to the ground. Signals with frequencies above the foF2 will penetrate the ionosphere and propagate into space, thus all information coded within that signal will be lost to space. The work presented here aims to demonstrate that a foF2 forecast model can be developed by combining the F10.7 cm radio flux index, local maximum daily solar elevation angle and the planetary K‐index. We based our model on analyzing the historical foF2 variation measured between 2010 and 2019 above Grahamstown, South Africa. The historical and predicted data sets used to develop the model are obtained from databases maintained by the South African National Space Agency, the National Aeronautics and Space Administration and the National Oceanic and Atmospheric Administration. The proposed model improves on the results of the Ionospheric Communications Enhanced Profile Analysis and Circuit Prediction Program in terms of the root mean square error skill score metric. Key Points We present a methodology for deriving a regional foF2 model for Grahamstown, South Africa The model used hourly foF2 ionosonde data measured over a decade, the F10.7 index, maximum daily solar elevation angle and the Kp index The model showed an improvement on currently used foF2 prediction software, quantified by the root mean square error skill score metric</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2023SW003482</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0106-5709</orcidid><orcidid>https://orcid.org/0000-0003-3175-5134</orcidid><orcidid>https://orcid.org/0000-0003-2846-3915</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1542-7390
ispartof Space Weather, 2023-08, Vol.21 (8), p.n/a
issn 1542-7390
1539-4964
1542-7390
language eng
recordid cdi_proquest_journals_2857874888
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley Online Library (Open Access Collection)
subjects Aeronautics
Circuits
critical frequency
Datasets
Elevation angle
foF2
forecast
Ionosondes
Ionosphere
Lower ionosphere
Mean square errors
modeling
Modelling
Parameters
Radio
Regional development
Regression analysis
Regression models
Root-mean-square errors
space‐weather
title Development of a Regional F‐Region Critical Frequency Model for Southern Africa
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T00%3A03%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Regional%20F%E2%80%90Region%20Critical%20Frequency%20Model%20for%20Southern%20Africa&rft.jtitle=Space%20Weather&rft.au=Brijraj,%20S.&rft.date=2023-08&rft.volume=21&rft.issue=8&rft.epage=n/a&rft.issn=1542-7390&rft.eissn=1542-7390&rft_id=info:doi/10.1029/2023SW003482&rft_dat=%3Cproquest_cross%3E2857874888%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2857874888&rft_id=info:pmid/&rfr_iscdi=true