Equipment Disassembly and Maintenance in an Uncertain Environment Based on a Peafowl Optimization Algorithm

Disassembly sequence planning (DSP) is a key approach for optimizing various industrial equipment-maintenance processes. Finding fast and effective DSP solutions plays an important role in improving maintenance efficiency and quality. However, when disassembling industrial equipment, there are many...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2023-08, Vol.11 (8), p.2462
Hauptverfasser: Liu, Jiang, Zhan, Changshu, Liu, Zhiyong, Zheng, Shuangqing, Wang, Haiyang, Meng, Zhou, Xu, Ruya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 2462
container_title Processes
container_volume 11
creator Liu, Jiang
Zhan, Changshu
Liu, Zhiyong
Zheng, Shuangqing
Wang, Haiyang
Meng, Zhou
Xu, Ruya
description Disassembly sequence planning (DSP) is a key approach for optimizing various industrial equipment-maintenance processes. Finding fast and effective DSP solutions plays an important role in improving maintenance efficiency and quality. However, when disassembling industrial equipment, there are many uncertainties that can have a detrimental impact on the disassembly and subsequent maintenance work. Therefore, this paper proposes a multi-objective DSP problem in an uncertain environment that addresses the uncertainties in the disassembly process through stochastic planning, with the objectives of minimizing disassembly time and enhancing responsiveness to priority maintenance components. Due to the complexity of the problem, an improved peafowl optimization algorithm (IPOA) is proposed for efficient problem-solving. The algorithm is specifically designed and incorporates four customized optimization mechanisms: peafowls’ courtship behavior, the adaptive behavior of female peafowls in proximity, the adaptive search behavior of peafowl chicks, and interactive behavior among male peafowls. These mechanisms enable effective search for optimal or near-optimal solutions. Through comparisons with a real-world industrial case and other advanced algorithms, the superiority of the IPOA in solving DSP problems is demonstrated. This research contributes to improving maintenance efficiency and quality, bringing positive impacts to industrial equipment maintenance.
doi_str_mv 10.3390/pr11082462
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2857449227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762547429</galeid><sourcerecordid>A762547429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-d159eb45d0bbbe8abe78fdc599b32f8b39066b1280eb4f67e95479176c19302b3</originalsourceid><addsrcrecordid>eNpNUctOwzAQtBBIVNALX2CJG1KKH0kcH0spD6moHOg5shO7uCR2arug8vUYigS7h12NZma1uwBcYDShlKPrwWOMKpKX5AiMCCEs4wyz43_9KRiHsEEpOKZVUY7A23y7M0OvbIS3JogQVC-7PRS2hU_C2KissI2CxiYIrlLrY4Lh3L4b7-yP7kYE1UKXGPBZCe0-OrgcounNp4gmwdNu7byJr_05ONGiC2r8W8_A6m7-MnvIFsv7x9l0kTWU5jFrccGVzIsWSSlVJaRilW6bgnNJia5kWrUsJSYVSixdMsWLnHHMygZzioikZ-Dy4Dt4t92pEOuN23mbRtakKlie83SPxJocWGvRqdpY7aIXTcpW9aZxVmmT8CkrSbLPCU-Cq4Og8S4Er3Q9eNMLv68xqr8fUP89gH4BHmx4fA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857449227</pqid></control><display><type>article</type><title>Equipment Disassembly and Maintenance in an Uncertain Environment Based on a Peafowl Optimization Algorithm</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Liu, Jiang ; Zhan, Changshu ; Liu, Zhiyong ; Zheng, Shuangqing ; Wang, Haiyang ; Meng, Zhou ; Xu, Ruya</creator><creatorcontrib>Liu, Jiang ; Zhan, Changshu ; Liu, Zhiyong ; Zheng, Shuangqing ; Wang, Haiyang ; Meng, Zhou ; Xu, Ruya</creatorcontrib><description>Disassembly sequence planning (DSP) is a key approach for optimizing various industrial equipment-maintenance processes. Finding fast and effective DSP solutions plays an important role in improving maintenance efficiency and quality. However, when disassembling industrial equipment, there are many uncertainties that can have a detrimental impact on the disassembly and subsequent maintenance work. Therefore, this paper proposes a multi-objective DSP problem in an uncertain environment that addresses the uncertainties in the disassembly process through stochastic planning, with the objectives of minimizing disassembly time and enhancing responsiveness to priority maintenance components. Due to the complexity of the problem, an improved peafowl optimization algorithm (IPOA) is proposed for efficient problem-solving. The algorithm is specifically designed and incorporates four customized optimization mechanisms: peafowls’ courtship behavior, the adaptive behavior of female peafowls in proximity, the adaptive search behavior of peafowl chicks, and interactive behavior among male peafowls. These mechanisms enable effective search for optimal or near-optimal solutions. Through comparisons with a real-world industrial case and other advanced algorithms, the superiority of the IPOA in solving DSP problems is demonstrated. This research contributes to improving maintenance efficiency and quality, bringing positive impacts to industrial equipment maintenance.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr11082462</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptive search techniques ; Algorithms ; Costs ; Courtship ; Digital signal processors ; Disassembly sequences ; Dismantling ; Efficiency ; Energy consumption ; Expected values ; Exploratory behavior ; Genetic algorithms ; Heuristic ; Industrial equipment ; Literature reviews ; Maintenance ; Mathematical models ; Mathematical optimization ; Optimization ; Optimization algorithms ; Peafowl ; Problem solving ; Random variables ; Uncertainty</subject><ispartof>Processes, 2023-08, Vol.11 (8), p.2462</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-d159eb45d0bbbe8abe78fdc599b32f8b39066b1280eb4f67e95479176c19302b3</citedby><cites>FETCH-LOGICAL-c334t-d159eb45d0bbbe8abe78fdc599b32f8b39066b1280eb4f67e95479176c19302b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Jiang</creatorcontrib><creatorcontrib>Zhan, Changshu</creatorcontrib><creatorcontrib>Liu, Zhiyong</creatorcontrib><creatorcontrib>Zheng, Shuangqing</creatorcontrib><creatorcontrib>Wang, Haiyang</creatorcontrib><creatorcontrib>Meng, Zhou</creatorcontrib><creatorcontrib>Xu, Ruya</creatorcontrib><title>Equipment Disassembly and Maintenance in an Uncertain Environment Based on a Peafowl Optimization Algorithm</title><title>Processes</title><description>Disassembly sequence planning (DSP) is a key approach for optimizing various industrial equipment-maintenance processes. Finding fast and effective DSP solutions plays an important role in improving maintenance efficiency and quality. However, when disassembling industrial equipment, there are many uncertainties that can have a detrimental impact on the disassembly and subsequent maintenance work. Therefore, this paper proposes a multi-objective DSP problem in an uncertain environment that addresses the uncertainties in the disassembly process through stochastic planning, with the objectives of minimizing disassembly time and enhancing responsiveness to priority maintenance components. Due to the complexity of the problem, an improved peafowl optimization algorithm (IPOA) is proposed for efficient problem-solving. The algorithm is specifically designed and incorporates four customized optimization mechanisms: peafowls’ courtship behavior, the adaptive behavior of female peafowls in proximity, the adaptive search behavior of peafowl chicks, and interactive behavior among male peafowls. These mechanisms enable effective search for optimal or near-optimal solutions. Through comparisons with a real-world industrial case and other advanced algorithms, the superiority of the IPOA in solving DSP problems is demonstrated. This research contributes to improving maintenance efficiency and quality, bringing positive impacts to industrial equipment maintenance.</description><subject>Adaptive search techniques</subject><subject>Algorithms</subject><subject>Costs</subject><subject>Courtship</subject><subject>Digital signal processors</subject><subject>Disassembly sequences</subject><subject>Dismantling</subject><subject>Efficiency</subject><subject>Energy consumption</subject><subject>Expected values</subject><subject>Exploratory behavior</subject><subject>Genetic algorithms</subject><subject>Heuristic</subject><subject>Industrial equipment</subject><subject>Literature reviews</subject><subject>Maintenance</subject><subject>Mathematical models</subject><subject>Mathematical optimization</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Peafowl</subject><subject>Problem solving</subject><subject>Random variables</subject><subject>Uncertainty</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNUctOwzAQtBBIVNALX2CJG1KKH0kcH0spD6moHOg5shO7uCR2arug8vUYigS7h12NZma1uwBcYDShlKPrwWOMKpKX5AiMCCEs4wyz43_9KRiHsEEpOKZVUY7A23y7M0OvbIS3JogQVC-7PRS2hU_C2KissI2CxiYIrlLrY4Lh3L4b7-yP7kYE1UKXGPBZCe0-OrgcounNp4gmwdNu7byJr_05ONGiC2r8W8_A6m7-MnvIFsv7x9l0kTWU5jFrccGVzIsWSSlVJaRilW6bgnNJia5kWrUsJSYVSixdMsWLnHHMygZzioikZ-Dy4Dt4t92pEOuN23mbRtakKlie83SPxJocWGvRqdpY7aIXTcpW9aZxVmmT8CkrSbLPCU-Cq4Og8S4Er3Q9eNMLv68xqr8fUP89gH4BHmx4fA</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Liu, Jiang</creator><creator>Zhan, Changshu</creator><creator>Liu, Zhiyong</creator><creator>Zheng, Shuangqing</creator><creator>Wang, Haiyang</creator><creator>Meng, Zhou</creator><creator>Xu, Ruya</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230801</creationdate><title>Equipment Disassembly and Maintenance in an Uncertain Environment Based on a Peafowl Optimization Algorithm</title><author>Liu, Jiang ; Zhan, Changshu ; Liu, Zhiyong ; Zheng, Shuangqing ; Wang, Haiyang ; Meng, Zhou ; Xu, Ruya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-d159eb45d0bbbe8abe78fdc599b32f8b39066b1280eb4f67e95479176c19302b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive search techniques</topic><topic>Algorithms</topic><topic>Costs</topic><topic>Courtship</topic><topic>Digital signal processors</topic><topic>Disassembly sequences</topic><topic>Dismantling</topic><topic>Efficiency</topic><topic>Energy consumption</topic><topic>Expected values</topic><topic>Exploratory behavior</topic><topic>Genetic algorithms</topic><topic>Heuristic</topic><topic>Industrial equipment</topic><topic>Literature reviews</topic><topic>Maintenance</topic><topic>Mathematical models</topic><topic>Mathematical optimization</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Peafowl</topic><topic>Problem solving</topic><topic>Random variables</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jiang</creatorcontrib><creatorcontrib>Zhan, Changshu</creatorcontrib><creatorcontrib>Liu, Zhiyong</creatorcontrib><creatorcontrib>Zheng, Shuangqing</creatorcontrib><creatorcontrib>Wang, Haiyang</creatorcontrib><creatorcontrib>Meng, Zhou</creatorcontrib><creatorcontrib>Xu, Ruya</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jiang</au><au>Zhan, Changshu</au><au>Liu, Zhiyong</au><au>Zheng, Shuangqing</au><au>Wang, Haiyang</au><au>Meng, Zhou</au><au>Xu, Ruya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equipment Disassembly and Maintenance in an Uncertain Environment Based on a Peafowl Optimization Algorithm</atitle><jtitle>Processes</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>11</volume><issue>8</issue><spage>2462</spage><pages>2462-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Disassembly sequence planning (DSP) is a key approach for optimizing various industrial equipment-maintenance processes. Finding fast and effective DSP solutions plays an important role in improving maintenance efficiency and quality. However, when disassembling industrial equipment, there are many uncertainties that can have a detrimental impact on the disassembly and subsequent maintenance work. Therefore, this paper proposes a multi-objective DSP problem in an uncertain environment that addresses the uncertainties in the disassembly process through stochastic planning, with the objectives of minimizing disassembly time and enhancing responsiveness to priority maintenance components. Due to the complexity of the problem, an improved peafowl optimization algorithm (IPOA) is proposed for efficient problem-solving. The algorithm is specifically designed and incorporates four customized optimization mechanisms: peafowls’ courtship behavior, the adaptive behavior of female peafowls in proximity, the adaptive search behavior of peafowl chicks, and interactive behavior among male peafowls. These mechanisms enable effective search for optimal or near-optimal solutions. Through comparisons with a real-world industrial case and other advanced algorithms, the superiority of the IPOA in solving DSP problems is demonstrated. This research contributes to improving maintenance efficiency and quality, bringing positive impacts to industrial equipment maintenance.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr11082462</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2023-08, Vol.11 (8), p.2462
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_2857449227
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adaptive search techniques
Algorithms
Costs
Courtship
Digital signal processors
Disassembly sequences
Dismantling
Efficiency
Energy consumption
Expected values
Exploratory behavior
Genetic algorithms
Heuristic
Industrial equipment
Literature reviews
Maintenance
Mathematical models
Mathematical optimization
Optimization
Optimization algorithms
Peafowl
Problem solving
Random variables
Uncertainty
title Equipment Disassembly and Maintenance in an Uncertain Environment Based on a Peafowl Optimization Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A24%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equipment%20Disassembly%20and%20Maintenance%20in%20an%20Uncertain%20Environment%20Based%20on%20a%20Peafowl%20Optimization%20Algorithm&rft.jtitle=Processes&rft.au=Liu,%20Jiang&rft.date=2023-08-01&rft.volume=11&rft.issue=8&rft.spage=2462&rft.pages=2462-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr11082462&rft_dat=%3Cgale_proqu%3EA762547429%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2857449227&rft_id=info:pmid/&rft_galeid=A762547429&rfr_iscdi=true