Equipment Disassembly and Maintenance in an Uncertain Environment Based on a Peafowl Optimization Algorithm
Disassembly sequence planning (DSP) is a key approach for optimizing various industrial equipment-maintenance processes. Finding fast and effective DSP solutions plays an important role in improving maintenance efficiency and quality. However, when disassembling industrial equipment, there are many...
Gespeichert in:
Veröffentlicht in: | Processes 2023-08, Vol.11 (8), p.2462 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 2462 |
container_title | Processes |
container_volume | 11 |
creator | Liu, Jiang Zhan, Changshu Liu, Zhiyong Zheng, Shuangqing Wang, Haiyang Meng, Zhou Xu, Ruya |
description | Disassembly sequence planning (DSP) is a key approach for optimizing various industrial equipment-maintenance processes. Finding fast and effective DSP solutions plays an important role in improving maintenance efficiency and quality. However, when disassembling industrial equipment, there are many uncertainties that can have a detrimental impact on the disassembly and subsequent maintenance work. Therefore, this paper proposes a multi-objective DSP problem in an uncertain environment that addresses the uncertainties in the disassembly process through stochastic planning, with the objectives of minimizing disassembly time and enhancing responsiveness to priority maintenance components. Due to the complexity of the problem, an improved peafowl optimization algorithm (IPOA) is proposed for efficient problem-solving. The algorithm is specifically designed and incorporates four customized optimization mechanisms: peafowls’ courtship behavior, the adaptive behavior of female peafowls in proximity, the adaptive search behavior of peafowl chicks, and interactive behavior among male peafowls. These mechanisms enable effective search for optimal or near-optimal solutions. Through comparisons with a real-world industrial case and other advanced algorithms, the superiority of the IPOA in solving DSP problems is demonstrated. This research contributes to improving maintenance efficiency and quality, bringing positive impacts to industrial equipment maintenance. |
doi_str_mv | 10.3390/pr11082462 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2857449227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762547429</galeid><sourcerecordid>A762547429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-d159eb45d0bbbe8abe78fdc599b32f8b39066b1280eb4f67e95479176c19302b3</originalsourceid><addsrcrecordid>eNpNUctOwzAQtBBIVNALX2CJG1KKH0kcH0spD6moHOg5shO7uCR2arug8vUYigS7h12NZma1uwBcYDShlKPrwWOMKpKX5AiMCCEs4wyz43_9KRiHsEEpOKZVUY7A23y7M0OvbIS3JogQVC-7PRS2hU_C2KissI2CxiYIrlLrY4Lh3L4b7-yP7kYE1UKXGPBZCe0-OrgcounNp4gmwdNu7byJr_05ONGiC2r8W8_A6m7-MnvIFsv7x9l0kTWU5jFrccGVzIsWSSlVJaRilW6bgnNJia5kWrUsJSYVSixdMsWLnHHMygZzioikZ-Dy4Dt4t92pEOuN23mbRtakKlie83SPxJocWGvRqdpY7aIXTcpW9aZxVmmT8CkrSbLPCU-Cq4Og8S4Er3Q9eNMLv68xqr8fUP89gH4BHmx4fA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857449227</pqid></control><display><type>article</type><title>Equipment Disassembly and Maintenance in an Uncertain Environment Based on a Peafowl Optimization Algorithm</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Liu, Jiang ; Zhan, Changshu ; Liu, Zhiyong ; Zheng, Shuangqing ; Wang, Haiyang ; Meng, Zhou ; Xu, Ruya</creator><creatorcontrib>Liu, Jiang ; Zhan, Changshu ; Liu, Zhiyong ; Zheng, Shuangqing ; Wang, Haiyang ; Meng, Zhou ; Xu, Ruya</creatorcontrib><description>Disassembly sequence planning (DSP) is a key approach for optimizing various industrial equipment-maintenance processes. Finding fast and effective DSP solutions plays an important role in improving maintenance efficiency and quality. However, when disassembling industrial equipment, there are many uncertainties that can have a detrimental impact on the disassembly and subsequent maintenance work. Therefore, this paper proposes a multi-objective DSP problem in an uncertain environment that addresses the uncertainties in the disassembly process through stochastic planning, with the objectives of minimizing disassembly time and enhancing responsiveness to priority maintenance components. Due to the complexity of the problem, an improved peafowl optimization algorithm (IPOA) is proposed for efficient problem-solving. The algorithm is specifically designed and incorporates four customized optimization mechanisms: peafowls’ courtship behavior, the adaptive behavior of female peafowls in proximity, the adaptive search behavior of peafowl chicks, and interactive behavior among male peafowls. These mechanisms enable effective search for optimal or near-optimal solutions. Through comparisons with a real-world industrial case and other advanced algorithms, the superiority of the IPOA in solving DSP problems is demonstrated. This research contributes to improving maintenance efficiency and quality, bringing positive impacts to industrial equipment maintenance.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr11082462</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptive search techniques ; Algorithms ; Costs ; Courtship ; Digital signal processors ; Disassembly sequences ; Dismantling ; Efficiency ; Energy consumption ; Expected values ; Exploratory behavior ; Genetic algorithms ; Heuristic ; Industrial equipment ; Literature reviews ; Maintenance ; Mathematical models ; Mathematical optimization ; Optimization ; Optimization algorithms ; Peafowl ; Problem solving ; Random variables ; Uncertainty</subject><ispartof>Processes, 2023-08, Vol.11 (8), p.2462</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-d159eb45d0bbbe8abe78fdc599b32f8b39066b1280eb4f67e95479176c19302b3</citedby><cites>FETCH-LOGICAL-c334t-d159eb45d0bbbe8abe78fdc599b32f8b39066b1280eb4f67e95479176c19302b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Jiang</creatorcontrib><creatorcontrib>Zhan, Changshu</creatorcontrib><creatorcontrib>Liu, Zhiyong</creatorcontrib><creatorcontrib>Zheng, Shuangqing</creatorcontrib><creatorcontrib>Wang, Haiyang</creatorcontrib><creatorcontrib>Meng, Zhou</creatorcontrib><creatorcontrib>Xu, Ruya</creatorcontrib><title>Equipment Disassembly and Maintenance in an Uncertain Environment Based on a Peafowl Optimization Algorithm</title><title>Processes</title><description>Disassembly sequence planning (DSP) is a key approach for optimizing various industrial equipment-maintenance processes. Finding fast and effective DSP solutions plays an important role in improving maintenance efficiency and quality. However, when disassembling industrial equipment, there are many uncertainties that can have a detrimental impact on the disassembly and subsequent maintenance work. Therefore, this paper proposes a multi-objective DSP problem in an uncertain environment that addresses the uncertainties in the disassembly process through stochastic planning, with the objectives of minimizing disassembly time and enhancing responsiveness to priority maintenance components. Due to the complexity of the problem, an improved peafowl optimization algorithm (IPOA) is proposed for efficient problem-solving. The algorithm is specifically designed and incorporates four customized optimization mechanisms: peafowls’ courtship behavior, the adaptive behavior of female peafowls in proximity, the adaptive search behavior of peafowl chicks, and interactive behavior among male peafowls. These mechanisms enable effective search for optimal or near-optimal solutions. Through comparisons with a real-world industrial case and other advanced algorithms, the superiority of the IPOA in solving DSP problems is demonstrated. This research contributes to improving maintenance efficiency and quality, bringing positive impacts to industrial equipment maintenance.</description><subject>Adaptive search techniques</subject><subject>Algorithms</subject><subject>Costs</subject><subject>Courtship</subject><subject>Digital signal processors</subject><subject>Disassembly sequences</subject><subject>Dismantling</subject><subject>Efficiency</subject><subject>Energy consumption</subject><subject>Expected values</subject><subject>Exploratory behavior</subject><subject>Genetic algorithms</subject><subject>Heuristic</subject><subject>Industrial equipment</subject><subject>Literature reviews</subject><subject>Maintenance</subject><subject>Mathematical models</subject><subject>Mathematical optimization</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Peafowl</subject><subject>Problem solving</subject><subject>Random variables</subject><subject>Uncertainty</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNUctOwzAQtBBIVNALX2CJG1KKH0kcH0spD6moHOg5shO7uCR2arug8vUYigS7h12NZma1uwBcYDShlKPrwWOMKpKX5AiMCCEs4wyz43_9KRiHsEEpOKZVUY7A23y7M0OvbIS3JogQVC-7PRS2hU_C2KissI2CxiYIrlLrY4Lh3L4b7-yP7kYE1UKXGPBZCe0-OrgcounNp4gmwdNu7byJr_05ONGiC2r8W8_A6m7-MnvIFsv7x9l0kTWU5jFrccGVzIsWSSlVJaRilW6bgnNJia5kWrUsJSYVSixdMsWLnHHMygZzioikZ-Dy4Dt4t92pEOuN23mbRtakKlie83SPxJocWGvRqdpY7aIXTcpW9aZxVmmT8CkrSbLPCU-Cq4Og8S4Er3Q9eNMLv68xqr8fUP89gH4BHmx4fA</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Liu, Jiang</creator><creator>Zhan, Changshu</creator><creator>Liu, Zhiyong</creator><creator>Zheng, Shuangqing</creator><creator>Wang, Haiyang</creator><creator>Meng, Zhou</creator><creator>Xu, Ruya</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230801</creationdate><title>Equipment Disassembly and Maintenance in an Uncertain Environment Based on a Peafowl Optimization Algorithm</title><author>Liu, Jiang ; Zhan, Changshu ; Liu, Zhiyong ; Zheng, Shuangqing ; Wang, Haiyang ; Meng, Zhou ; Xu, Ruya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-d159eb45d0bbbe8abe78fdc599b32f8b39066b1280eb4f67e95479176c19302b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive search techniques</topic><topic>Algorithms</topic><topic>Costs</topic><topic>Courtship</topic><topic>Digital signal processors</topic><topic>Disassembly sequences</topic><topic>Dismantling</topic><topic>Efficiency</topic><topic>Energy consumption</topic><topic>Expected values</topic><topic>Exploratory behavior</topic><topic>Genetic algorithms</topic><topic>Heuristic</topic><topic>Industrial equipment</topic><topic>Literature reviews</topic><topic>Maintenance</topic><topic>Mathematical models</topic><topic>Mathematical optimization</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Peafowl</topic><topic>Problem solving</topic><topic>Random variables</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jiang</creatorcontrib><creatorcontrib>Zhan, Changshu</creatorcontrib><creatorcontrib>Liu, Zhiyong</creatorcontrib><creatorcontrib>Zheng, Shuangqing</creatorcontrib><creatorcontrib>Wang, Haiyang</creatorcontrib><creatorcontrib>Meng, Zhou</creatorcontrib><creatorcontrib>Xu, Ruya</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jiang</au><au>Zhan, Changshu</au><au>Liu, Zhiyong</au><au>Zheng, Shuangqing</au><au>Wang, Haiyang</au><au>Meng, Zhou</au><au>Xu, Ruya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equipment Disassembly and Maintenance in an Uncertain Environment Based on a Peafowl Optimization Algorithm</atitle><jtitle>Processes</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>11</volume><issue>8</issue><spage>2462</spage><pages>2462-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Disassembly sequence planning (DSP) is a key approach for optimizing various industrial equipment-maintenance processes. Finding fast and effective DSP solutions plays an important role in improving maintenance efficiency and quality. However, when disassembling industrial equipment, there are many uncertainties that can have a detrimental impact on the disassembly and subsequent maintenance work. Therefore, this paper proposes a multi-objective DSP problem in an uncertain environment that addresses the uncertainties in the disassembly process through stochastic planning, with the objectives of minimizing disassembly time and enhancing responsiveness to priority maintenance components. Due to the complexity of the problem, an improved peafowl optimization algorithm (IPOA) is proposed for efficient problem-solving. The algorithm is specifically designed and incorporates four customized optimization mechanisms: peafowls’ courtship behavior, the adaptive behavior of female peafowls in proximity, the adaptive search behavior of peafowl chicks, and interactive behavior among male peafowls. These mechanisms enable effective search for optimal or near-optimal solutions. Through comparisons with a real-world industrial case and other advanced algorithms, the superiority of the IPOA in solving DSP problems is demonstrated. This research contributes to improving maintenance efficiency and quality, bringing positive impacts to industrial equipment maintenance.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr11082462</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2023-08, Vol.11 (8), p.2462 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2857449227 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adaptive search techniques Algorithms Costs Courtship Digital signal processors Disassembly sequences Dismantling Efficiency Energy consumption Expected values Exploratory behavior Genetic algorithms Heuristic Industrial equipment Literature reviews Maintenance Mathematical models Mathematical optimization Optimization Optimization algorithms Peafowl Problem solving Random variables Uncertainty |
title | Equipment Disassembly and Maintenance in an Uncertain Environment Based on a Peafowl Optimization Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A24%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equipment%20Disassembly%20and%20Maintenance%20in%20an%20Uncertain%20Environment%20Based%20on%20a%20Peafowl%20Optimization%20Algorithm&rft.jtitle=Processes&rft.au=Liu,%20Jiang&rft.date=2023-08-01&rft.volume=11&rft.issue=8&rft.spage=2462&rft.pages=2462-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr11082462&rft_dat=%3Cgale_proqu%3EA762547429%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2857449227&rft_id=info:pmid/&rft_galeid=A762547429&rfr_iscdi=true |