The Sustainability Index and Other Stability Analyses for Evaluating Superior Fe-Tolerant Rice (Oryza sativa L.)

Rice (Oryza sativa L.) is an important agricultural commodity in Indonesia. The combination of stability analysis on yields was considered accurate in selecting superior genotypes. The objectives of this study were as follows: identify the effects of genotypes, the environment, and their interaction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2023-08, Vol.15 (16), p.12233
Hauptverfasser: Utami, Dwinita Wikan, Maruapey, Ajang, Maulana, Haris, Sinaga, Parlin Halomon, Basith, Susilawati, Karuniawan, Agung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rice (Oryza sativa L.) is an important agricultural commodity in Indonesia. The combination of stability analysis on yields was considered accurate in selecting superior genotypes. The objectives of this study were as follows: identify the effects of genotypes, the environment, and their interactions (GEIs) on the yields of Fe-tolerant rice; select superior genotypes (stable and high yields) under diverse environment conditions in Indonesia; and determine the mega-environments (MEs) and representative environments for Fe-tolerant rice development. Fifteen genotypes of Fe-tolerant rice were used for this study. Field experiments were conducted at six experimental fields in Indonesia using a randomized block design with two replications. A combined analysis of variance (ANOVA) was used to determine the effect of genotypes, the environment, and their interactions on Fe-tolerant rice yields. Parametric, non-parametric, AMMI (additive main effects and multiplicative interaction), GGE biplot, and SI (sustainability index) measurements were used to determine the superior genotypes. GGE biplot was also used to determine MEs and representative environments. The measurement results showed that genotypes, the environment, and their interactions significantly affected rice yields with contributions of 13.30%, 35.78%, and 50.92%, respectively. One superior Fe-tolerant rice genotype (stable and high yield) was selected based on all measurements, namely G4 (B14316E-KA-4). In this experiment, two MEs were generated. Lampung was identified as a representative environment for the development of superior genotypes. The results of this study can be used as a consideration in the release and development of new superior varieties of Fe-tolerant rice in Indonesia.
ISSN:2071-1050
2071-1050
DOI:10.3390/su151612233