Flow Field and Gas Field Distribution of Non-Submerged Cavitation Water Jet Based on Dual-Nozzle with Concentric Configuration
Cavitation water jet peening is an efficient and green surface treatment technology. The dual-nozzle can realize a cavitation water jet in air (non-submerged condition), which can be used for the surface treatment of large structures. The flow field characteristics of the dual-nozzle determine the c...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2023-08, Vol.15 (16), p.2904 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | 2904 |
container_title | Water (Basel) |
container_volume | 15 |
creator | Luo, Yun Zang, Jingyu Zheng, Hongxiang |
description | Cavitation water jet peening is an efficient and green surface treatment technology. The dual-nozzle can realize a cavitation water jet in air (non-submerged condition), which can be used for the surface treatment of large structures. The flow field characteristics of the dual-nozzle determine the cavitation effect. In this paper, the simulation of a cavitation water jet in air is carried out using Fluent software. The flow field characteristics containing velocity distribution, impact pressure, and gas phase volume fraction distribution are studied in detail. Furthermore, the effects of the nozzle structure parameters and incidence pressure on flow field characteristics are discussed. It was found that the structure parameters of the inner nozzle have a great influence on the flow field characteristics. Setting a contraction segment and expansion segment can improve the impact pressure and increase the intensity of the cavitation jet. Increasing the throat diameter and incidence pressure of the internal nozzle is also beneficial to improve the impact pressure and cavitation intensity. In order to assure a good cavitation effect, nozzle optimization should be performed. This study has guiding significance for the design of the dual-nozzle for a non-submerged cavitation water jet. |
doi_str_mv | 10.3390/w15162904 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2857440927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762549724</galeid><sourcerecordid>A762549724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-318f0a6040ca86179c9bb8916ae7137aeaeed1e121a56bcb071db8ceed97a4813</originalsourceid><addsrcrecordid>eNpNUU1PwzAMrRBITMCBfxCJE4dC0qRNc4TB-NA0DoA4Vm7qjqCuGUnKBAd-O9mGEPbBz8_v2QcnyTGjZ5wrer5iOSsyRcVOMsqo5KkQgu3-w_vJkfdvNIZQZZnTUfI96eyKTAx2DYG-ITfgf7sr44Mz9RCM7Yltycz26eNQL9DNsSFj-DABNrMXCOjIPQZyCT6OInU1QJfO7NdXh2RlwisZ215jH_fpNWzNfHAb82Gy10Ln8ei3HiTPk-un8W06fbi5G19MU805CylnZUuhoIJqKAsmlVZ1XSpWAErGJSAgNgxZxiAval1TyZq61JFUEkTJ-EFyst27dPZ9QB-qNzu4Pp6ssjKXQlCVyag626rm0GFl-tYGBzpmgwujbY-tifyFLLJcKJmJaDjdGrSz3jtsq6UzC3CfFaPV-iXV30v4D_cgfeY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857440927</pqid></control><display><type>article</type><title>Flow Field and Gas Field Distribution of Non-Submerged Cavitation Water Jet Based on Dual-Nozzle with Concentric Configuration</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Luo, Yun ; Zang, Jingyu ; Zheng, Hongxiang</creator><creatorcontrib>Luo, Yun ; Zang, Jingyu ; Zheng, Hongxiang</creatorcontrib><description>Cavitation water jet peening is an efficient and green surface treatment technology. The dual-nozzle can realize a cavitation water jet in air (non-submerged condition), which can be used for the surface treatment of large structures. The flow field characteristics of the dual-nozzle determine the cavitation effect. In this paper, the simulation of a cavitation water jet in air is carried out using Fluent software. The flow field characteristics containing velocity distribution, impact pressure, and gas phase volume fraction distribution are studied in detail. Furthermore, the effects of the nozzle structure parameters and incidence pressure on flow field characteristics are discussed. It was found that the structure parameters of the inner nozzle have a great influence on the flow field characteristics. Setting a contraction segment and expansion segment can improve the impact pressure and increase the intensity of the cavitation jet. Increasing the throat diameter and incidence pressure of the internal nozzle is also beneficial to improve the impact pressure and cavitation intensity. In order to assure a good cavitation effect, nozzle optimization should be performed. This study has guiding significance for the design of the dual-nozzle for a non-submerged cavitation water jet.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w15162904</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Cavitation ; Distribution ; Gas fields ; Metal fatigue ; Natural gas ; Pressure vessels ; Residual stress ; Simulation ; Stainless steel ; Velocity</subject><ispartof>Water (Basel), 2023-08, Vol.15 (16), p.2904</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-318f0a6040ca86179c9bb8916ae7137aeaeed1e121a56bcb071db8ceed97a4813</citedby><cites>FETCH-LOGICAL-c331t-318f0a6040ca86179c9bb8916ae7137aeaeed1e121a56bcb071db8ceed97a4813</cites><orcidid>0000-0002-7263-0082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Luo, Yun</creatorcontrib><creatorcontrib>Zang, Jingyu</creatorcontrib><creatorcontrib>Zheng, Hongxiang</creatorcontrib><title>Flow Field and Gas Field Distribution of Non-Submerged Cavitation Water Jet Based on Dual-Nozzle with Concentric Configuration</title><title>Water (Basel)</title><description>Cavitation water jet peening is an efficient and green surface treatment technology. The dual-nozzle can realize a cavitation water jet in air (non-submerged condition), which can be used for the surface treatment of large structures. The flow field characteristics of the dual-nozzle determine the cavitation effect. In this paper, the simulation of a cavitation water jet in air is carried out using Fluent software. The flow field characteristics containing velocity distribution, impact pressure, and gas phase volume fraction distribution are studied in detail. Furthermore, the effects of the nozzle structure parameters and incidence pressure on flow field characteristics are discussed. It was found that the structure parameters of the inner nozzle have a great influence on the flow field characteristics. Setting a contraction segment and expansion segment can improve the impact pressure and increase the intensity of the cavitation jet. Increasing the throat diameter and incidence pressure of the internal nozzle is also beneficial to improve the impact pressure and cavitation intensity. In order to assure a good cavitation effect, nozzle optimization should be performed. This study has guiding significance for the design of the dual-nozzle for a non-submerged cavitation water jet.</description><subject>Cavitation</subject><subject>Distribution</subject><subject>Gas fields</subject><subject>Metal fatigue</subject><subject>Natural gas</subject><subject>Pressure vessels</subject><subject>Residual stress</subject><subject>Simulation</subject><subject>Stainless steel</subject><subject>Velocity</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNUU1PwzAMrRBITMCBfxCJE4dC0qRNc4TB-NA0DoA4Vm7qjqCuGUnKBAd-O9mGEPbBz8_v2QcnyTGjZ5wrer5iOSsyRcVOMsqo5KkQgu3-w_vJkfdvNIZQZZnTUfI96eyKTAx2DYG-ITfgf7sr44Mz9RCM7Yltycz26eNQL9DNsSFj-DABNrMXCOjIPQZyCT6OInU1QJfO7NdXh2RlwisZ215jH_fpNWzNfHAb82Gy10Ln8ei3HiTPk-un8W06fbi5G19MU805CylnZUuhoIJqKAsmlVZ1XSpWAErGJSAgNgxZxiAval1TyZq61JFUEkTJ-EFyst27dPZ9QB-qNzu4Pp6ssjKXQlCVyag626rm0GFl-tYGBzpmgwujbY-tifyFLLJcKJmJaDjdGrSz3jtsq6UzC3CfFaPV-iXV30v4D_cgfeY</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Luo, Yun</creator><creator>Zang, Jingyu</creator><creator>Zheng, Hongxiang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-7263-0082</orcidid></search><sort><creationdate>20230801</creationdate><title>Flow Field and Gas Field Distribution of Non-Submerged Cavitation Water Jet Based on Dual-Nozzle with Concentric Configuration</title><author>Luo, Yun ; Zang, Jingyu ; Zheng, Hongxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-318f0a6040ca86179c9bb8916ae7137aeaeed1e121a56bcb071db8ceed97a4813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cavitation</topic><topic>Distribution</topic><topic>Gas fields</topic><topic>Metal fatigue</topic><topic>Natural gas</topic><topic>Pressure vessels</topic><topic>Residual stress</topic><topic>Simulation</topic><topic>Stainless steel</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Yun</creatorcontrib><creatorcontrib>Zang, Jingyu</creatorcontrib><creatorcontrib>Zheng, Hongxiang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Yun</au><au>Zang, Jingyu</au><au>Zheng, Hongxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow Field and Gas Field Distribution of Non-Submerged Cavitation Water Jet Based on Dual-Nozzle with Concentric Configuration</atitle><jtitle>Water (Basel)</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>15</volume><issue>16</issue><spage>2904</spage><pages>2904-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Cavitation water jet peening is an efficient and green surface treatment technology. The dual-nozzle can realize a cavitation water jet in air (non-submerged condition), which can be used for the surface treatment of large structures. The flow field characteristics of the dual-nozzle determine the cavitation effect. In this paper, the simulation of a cavitation water jet in air is carried out using Fluent software. The flow field characteristics containing velocity distribution, impact pressure, and gas phase volume fraction distribution are studied in detail. Furthermore, the effects of the nozzle structure parameters and incidence pressure on flow field characteristics are discussed. It was found that the structure parameters of the inner nozzle have a great influence on the flow field characteristics. Setting a contraction segment and expansion segment can improve the impact pressure and increase the intensity of the cavitation jet. Increasing the throat diameter and incidence pressure of the internal nozzle is also beneficial to improve the impact pressure and cavitation intensity. In order to assure a good cavitation effect, nozzle optimization should be performed. This study has guiding significance for the design of the dual-nozzle for a non-submerged cavitation water jet.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w15162904</doi><orcidid>https://orcid.org/0000-0002-7263-0082</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4441 |
ispartof | Water (Basel), 2023-08, Vol.15 (16), p.2904 |
issn | 2073-4441 2073-4441 |
language | eng |
recordid | cdi_proquest_journals_2857440927 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Cavitation Distribution Gas fields Metal fatigue Natural gas Pressure vessels Residual stress Simulation Stainless steel Velocity |
title | Flow Field and Gas Field Distribution of Non-Submerged Cavitation Water Jet Based on Dual-Nozzle with Concentric Configuration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20Field%20and%20Gas%20Field%20Distribution%20of%20Non-Submerged%20Cavitation%20Water%20Jet%20Based%20on%20Dual-Nozzle%20with%20Concentric%20Configuration&rft.jtitle=Water%20(Basel)&rft.au=Luo,%20Yun&rft.date=2023-08-01&rft.volume=15&rft.issue=16&rft.spage=2904&rft.pages=2904-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w15162904&rft_dat=%3Cgale_proqu%3EA762549724%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2857440927&rft_id=info:pmid/&rft_galeid=A762549724&rfr_iscdi=true |