The lattice of one-sided congruences on an inverse semigroup

We build on the description of left congruences on an inverse semigroup in terms of the kernel and trace due to Petrich and Rankin. The notion of an inverse kernel for a left congruence is developed. Various properties of the trace and inverse kernel are discussed, in particular that the inverse ker...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Periodica mathematica Hungarica 2023-09, Vol.87 (1), p.1-26
1. Verfasser: Brookes, Matthew D. G. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26
container_issue 1
container_start_page 1
container_title Periodica mathematica Hungarica
container_volume 87
creator Brookes, Matthew D. G. K.
description We build on the description of left congruences on an inverse semigroup in terms of the kernel and trace due to Petrich and Rankin. The notion of an inverse kernel for a left congruence is developed. Various properties of the trace and inverse kernel are discussed, in particular that the inverse kernel is a full inverse subsemigroup and that both the trace and inverse kernel maps are onto ∩ -homomorphisms. It is shown that a left congruence is determined by its trace and inverse kernel, and the lattice of left congruences is identified as a subset of the direct product of the lattice of congruences on the idempotents and the lattice of full inverse subsemigroups. We demonstrate that every finitely generated left congruence is the join of a finitely generated trace minimal left congruence and a finitely generated idempotent separating left congruence. Characterisations are given of inverse semigroups that are left Noetherian, or are such that Rees left congruences are finitely generated.
doi_str_mv 10.1007/s10998-022-00497-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2857427748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2857427748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-cdfb9660779c18afc6efeeafb4dd286010dbf859d331a4d99fb078df15ee52e33</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9FJ0jYJeJHFL1jwsp5Dm0zWLrvpmrSC--uNVvDmaWB4n3eGh5BLBtcMQN4kBlorCpxTgFJLejgiM1YpRbni-pjMAASjlQBxSs5S2gBkTMCM3K7esNg2w9BZLHpf9AFp6hy6wvZhHUcMFlPeFk0ouvCBMWGRcNetYz_uz8mJb7YJL37nnLw-3K8WT3T58vi8uFtSK1g5UOt8q-sapNSWqcbbGj1i49vSOa7q_Iprvaq0E4I1pdPatyCV86xCrDgKMSdXU-8-9u8jpsFs-jGGfNJwVcmSS1mqnOJTysY-pYje7GO3a-KnYWC-LZnJksmWzI8lc8iQmKCUw2GN8a_6H-oL2yBrZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857427748</pqid></control><display><type>article</type><title>The lattice of one-sided congruences on an inverse semigroup</title><source>SpringerLink Journals - AutoHoldings</source><creator>Brookes, Matthew D. G. K.</creator><creatorcontrib>Brookes, Matthew D. G. K.</creatorcontrib><description>We build on the description of left congruences on an inverse semigroup in terms of the kernel and trace due to Petrich and Rankin. The notion of an inverse kernel for a left congruence is developed. Various properties of the trace and inverse kernel are discussed, in particular that the inverse kernel is a full inverse subsemigroup and that both the trace and inverse kernel maps are onto ∩ -homomorphisms. It is shown that a left congruence is determined by its trace and inverse kernel, and the lattice of left congruences is identified as a subset of the direct product of the lattice of congruences on the idempotents and the lattice of full inverse subsemigroups. We demonstrate that every finitely generated left congruence is the join of a finitely generated trace minimal left congruence and a finitely generated idempotent separating left congruence. Characterisations are given of inverse semigroups that are left Noetherian, or are such that Rees left congruences are finitely generated.</description><identifier>ISSN: 0031-5303</identifier><identifier>EISSN: 1588-2829</identifier><identifier>DOI: 10.1007/s10998-022-00497-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Congruences ; Homomorphisms ; Kernels ; Lattices (mathematics) ; Mathematics ; Mathematics and Statistics ; Semigroups</subject><ispartof>Periodica mathematica Hungarica, 2023-09, Vol.87 (1), p.1-26</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-cdfb9660779c18afc6efeeafb4dd286010dbf859d331a4d99fb078df15ee52e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10998-022-00497-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10998-022-00497-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Brookes, Matthew D. G. K.</creatorcontrib><title>The lattice of one-sided congruences on an inverse semigroup</title><title>Periodica mathematica Hungarica</title><addtitle>Period Math Hung</addtitle><description>We build on the description of left congruences on an inverse semigroup in terms of the kernel and trace due to Petrich and Rankin. The notion of an inverse kernel for a left congruence is developed. Various properties of the trace and inverse kernel are discussed, in particular that the inverse kernel is a full inverse subsemigroup and that both the trace and inverse kernel maps are onto ∩ -homomorphisms. It is shown that a left congruence is determined by its trace and inverse kernel, and the lattice of left congruences is identified as a subset of the direct product of the lattice of congruences on the idempotents and the lattice of full inverse subsemigroups. We demonstrate that every finitely generated left congruence is the join of a finitely generated trace minimal left congruence and a finitely generated idempotent separating left congruence. Characterisations are given of inverse semigroups that are left Noetherian, or are such that Rees left congruences are finitely generated.</description><subject>Congruences</subject><subject>Homomorphisms</subject><subject>Kernels</subject><subject>Lattices (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Semigroups</subject><issn>0031-5303</issn><issn>1588-2829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9FJ0jYJeJHFL1jwsp5Dm0zWLrvpmrSC--uNVvDmaWB4n3eGh5BLBtcMQN4kBlorCpxTgFJLejgiM1YpRbni-pjMAASjlQBxSs5S2gBkTMCM3K7esNg2w9BZLHpf9AFp6hy6wvZhHUcMFlPeFk0ouvCBMWGRcNetYz_uz8mJb7YJL37nnLw-3K8WT3T58vi8uFtSK1g5UOt8q-sapNSWqcbbGj1i49vSOa7q_Iprvaq0E4I1pdPatyCV86xCrDgKMSdXU-8-9u8jpsFs-jGGfNJwVcmSS1mqnOJTysY-pYje7GO3a-KnYWC-LZnJksmWzI8lc8iQmKCUw2GN8a_6H-oL2yBrZg</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Brookes, Matthew D. G. K.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230901</creationdate><title>The lattice of one-sided congruences on an inverse semigroup</title><author>Brookes, Matthew D. G. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-cdfb9660779c18afc6efeeafb4dd286010dbf859d331a4d99fb078df15ee52e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Congruences</topic><topic>Homomorphisms</topic><topic>Kernels</topic><topic>Lattices (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Semigroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brookes, Matthew D. G. K.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Periodica mathematica Hungarica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brookes, Matthew D. G. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The lattice of one-sided congruences on an inverse semigroup</atitle><jtitle>Periodica mathematica Hungarica</jtitle><stitle>Period Math Hung</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>87</volume><issue>1</issue><spage>1</spage><epage>26</epage><pages>1-26</pages><issn>0031-5303</issn><eissn>1588-2829</eissn><abstract>We build on the description of left congruences on an inverse semigroup in terms of the kernel and trace due to Petrich and Rankin. The notion of an inverse kernel for a left congruence is developed. Various properties of the trace and inverse kernel are discussed, in particular that the inverse kernel is a full inverse subsemigroup and that both the trace and inverse kernel maps are onto ∩ -homomorphisms. It is shown that a left congruence is determined by its trace and inverse kernel, and the lattice of left congruences is identified as a subset of the direct product of the lattice of congruences on the idempotents and the lattice of full inverse subsemigroups. We demonstrate that every finitely generated left congruence is the join of a finitely generated trace minimal left congruence and a finitely generated idempotent separating left congruence. Characterisations are given of inverse semigroups that are left Noetherian, or are such that Rees left congruences are finitely generated.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10998-022-00497-z</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-5303
ispartof Periodica mathematica Hungarica, 2023-09, Vol.87 (1), p.1-26
issn 0031-5303
1588-2829
language eng
recordid cdi_proquest_journals_2857427748
source SpringerLink Journals - AutoHoldings
subjects Congruences
Homomorphisms
Kernels
Lattices (mathematics)
Mathematics
Mathematics and Statistics
Semigroups
title The lattice of one-sided congruences on an inverse semigroup
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A29%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20lattice%20of%20one-sided%20congruences%20on%20an%20inverse%20semigroup&rft.jtitle=Periodica%20mathematica%20Hungarica&rft.au=Brookes,%20Matthew%20D.%20G.%20K.&rft.date=2023-09-01&rft.volume=87&rft.issue=1&rft.spage=1&rft.epage=26&rft.pages=1-26&rft.issn=0031-5303&rft.eissn=1588-2829&rft_id=info:doi/10.1007/s10998-022-00497-z&rft_dat=%3Cproquest_cross%3E2857427748%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2857427748&rft_id=info:pmid/&rfr_iscdi=true