The -adic Ising model in an external field on a Cayley tree: periodic Gibbs measures
We consider the generalized Gibbs measures corresponding to the -adic Ising model in an external field on the Cayley tree of order two. It is established that if , then there exist three translation-invariant and two -periodic non-translation-invariant -adic generalized Gibbs measures. It becomes cl...
Gespeichert in:
Veröffentlicht in: | Theoretical and mathematical physics 2023, Vol.216 (2), p.1238-1253 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1253 |
---|---|
container_issue | 2 |
container_start_page | 1238 |
container_title | Theoretical and mathematical physics |
container_volume | 216 |
creator | Mukhamedov, F. M. Rahmatullaev, M. M. Tukhtabaev, A. M. Mamadjonov, R. |
description | We consider the generalized Gibbs measures corresponding to the
-adic Ising model in an external field on the Cayley tree of order two. It is established that if
, then there exist three translation-invariant and two
-periodic non-translation-invariant
-adic generalized Gibbs measures. It becomes clear that if
,
, then one can find only one translation-invariant
-adic generalized Gibbs measure. Moreover, the considered model also exhibits chaotic behavior if
and
. It turns out that even without
, one could establish the existence of
-periodic renormalization-group solutions when
. This allows us to show the existence of a phase transition. |
doi_str_mv | 10.1134/S0040577923080123 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2857427673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2857427673</sourcerecordid><originalsourceid>FETCH-LOGICAL-p713-e546732ad5806bc4177d9017e11fa1449e722fbafa920e494ad116b40e91f2e33</originalsourceid><addsrcrecordid>eNplkEFLxDAQhYMoWFd_gLeA5-pMkjaNNym6Lix4sPeSbqbapdvWpAX339uyggdPA_O-ecx7jN0i3CNK9fAOoCDR2ggJGaCQZyzCRMvYSCnPWbTI8aJfsqsQ9gAIkGHEiuKTeGxds-Ob0HQf_NA7annTcdtx-h7Jd7bldUOt4_285Lk9tnTkoyd65AP5pl9u101VBX4gGyZP4Zpd1LYNdPM7V6x4eS7y13j7tt7kT9t40ChjSlSqpbAuySCtdgq1dgZQE2JtUSlDWoi6srU1AkgZZR1iWikgg7UgKVfs7mQ7-P5rojCW-35a_g2lyBKthJ79Z0qcqDD4OSD5PwqhXMor_5UnfwD4HF90</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857427673</pqid></control><display><type>article</type><title>The -adic Ising model in an external field on a Cayley tree: periodic Gibbs measures</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mukhamedov, F. M. ; Rahmatullaev, M. M. ; Tukhtabaev, A. M. ; Mamadjonov, R.</creator><creatorcontrib>Mukhamedov, F. M. ; Rahmatullaev, M. M. ; Tukhtabaev, A. M. ; Mamadjonov, R.</creatorcontrib><description>We consider the generalized Gibbs measures corresponding to the
-adic Ising model in an external field on the Cayley tree of order two. It is established that if
, then there exist three translation-invariant and two
-periodic non-translation-invariant
-adic generalized Gibbs measures. It becomes clear that if
,
, then one can find only one translation-invariant
-adic generalized Gibbs measure. Moreover, the considered model also exhibits chaotic behavior if
and
. It turns out that even without
, one could establish the existence of
-periodic renormalization-group solutions when
. This allows us to show the existence of a phase transition.</description><identifier>ISSN: 0040-5779</identifier><identifier>EISSN: 1573-9333</identifier><identifier>DOI: 10.1134/S0040577923080123</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Applications of Mathematics ; Invariants ; Ising model ; Mathematical and Computational Physics ; Phase transitions ; Physics ; Physics and Astronomy ; Theoretical</subject><ispartof>Theoretical and mathematical physics, 2023, Vol.216 (2), p.1238-1253</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0040577923080123$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0040577923080123$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mukhamedov, F. M.</creatorcontrib><creatorcontrib>Rahmatullaev, M. M.</creatorcontrib><creatorcontrib>Tukhtabaev, A. M.</creatorcontrib><creatorcontrib>Mamadjonov, R.</creatorcontrib><title>The -adic Ising model in an external field on a Cayley tree: periodic Gibbs measures</title><title>Theoretical and mathematical physics</title><addtitle>Theor Math Phys</addtitle><description>We consider the generalized Gibbs measures corresponding to the
-adic Ising model in an external field on the Cayley tree of order two. It is established that if
, then there exist three translation-invariant and two
-periodic non-translation-invariant
-adic generalized Gibbs measures. It becomes clear that if
,
, then one can find only one translation-invariant
-adic generalized Gibbs measure. Moreover, the considered model also exhibits chaotic behavior if
and
. It turns out that even without
, one could establish the existence of
-periodic renormalization-group solutions when
. This allows us to show the existence of a phase transition.</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Applications of Mathematics</subject><subject>Invariants</subject><subject>Ising model</subject><subject>Mathematical and Computational Physics</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><issn>0040-5779</issn><issn>1573-9333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNplkEFLxDAQhYMoWFd_gLeA5-pMkjaNNym6Lix4sPeSbqbapdvWpAX339uyggdPA_O-ecx7jN0i3CNK9fAOoCDR2ggJGaCQZyzCRMvYSCnPWbTI8aJfsqsQ9gAIkGHEiuKTeGxds-Ob0HQf_NA7annTcdtx-h7Jd7bldUOt4_285Lk9tnTkoyd65AP5pl9u101VBX4gGyZP4Zpd1LYNdPM7V6x4eS7y13j7tt7kT9t40ChjSlSqpbAuySCtdgq1dgZQE2JtUSlDWoi6srU1AkgZZR1iWikgg7UgKVfs7mQ7-P5rojCW-35a_g2lyBKthJ79Z0qcqDD4OSD5PwqhXMor_5UnfwD4HF90</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Mukhamedov, F. M.</creator><creator>Rahmatullaev, M. M.</creator><creator>Tukhtabaev, A. M.</creator><creator>Mamadjonov, R.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2023</creationdate><title>The -adic Ising model in an external field on a Cayley tree: periodic Gibbs measures</title><author>Mukhamedov, F. M. ; Rahmatullaev, M. M. ; Tukhtabaev, A. M. ; Mamadjonov, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p713-e546732ad5806bc4177d9017e11fa1449e722fbafa920e494ad116b40e91f2e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Applications of Mathematics</topic><topic>Invariants</topic><topic>Ising model</topic><topic>Mathematical and Computational Physics</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukhamedov, F. M.</creatorcontrib><creatorcontrib>Rahmatullaev, M. M.</creatorcontrib><creatorcontrib>Tukhtabaev, A. M.</creatorcontrib><creatorcontrib>Mamadjonov, R.</creatorcontrib><jtitle>Theoretical and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukhamedov, F. M.</au><au>Rahmatullaev, M. M.</au><au>Tukhtabaev, A. M.</au><au>Mamadjonov, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The -adic Ising model in an external field on a Cayley tree: periodic Gibbs measures</atitle><jtitle>Theoretical and mathematical physics</jtitle><stitle>Theor Math Phys</stitle><date>2023</date><risdate>2023</risdate><volume>216</volume><issue>2</issue><spage>1238</spage><epage>1253</epage><pages>1238-1253</pages><issn>0040-5779</issn><eissn>1573-9333</eissn><abstract>We consider the generalized Gibbs measures corresponding to the
-adic Ising model in an external field on the Cayley tree of order two. It is established that if
, then there exist three translation-invariant and two
-periodic non-translation-invariant
-adic generalized Gibbs measures. It becomes clear that if
,
, then one can find only one translation-invariant
-adic generalized Gibbs measure. Moreover, the considered model also exhibits chaotic behavior if
and
. It turns out that even without
, one could establish the existence of
-periodic renormalization-group solutions when
. This allows us to show the existence of a phase transition.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0040577923080123</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5779 |
ispartof | Theoretical and mathematical physics, 2023, Vol.216 (2), p.1238-1253 |
issn | 0040-5779 1573-9333 |
language | eng |
recordid | cdi_proquest_journals_2857427673 |
source | SpringerLink Journals - AutoHoldings |
subjects | 14/34 639/766/189 639/766/530 639/766/747 Applications of Mathematics Invariants Ising model Mathematical and Computational Physics Phase transitions Physics Physics and Astronomy Theoretical |
title | The -adic Ising model in an external field on a Cayley tree: periodic Gibbs measures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T19%3A37%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20-adic%20Ising%20model%20in%20an%20external%20field%20on%20a%20Cayley%20tree:%20periodic%20Gibbs%20measures&rft.jtitle=Theoretical%20and%20mathematical%20physics&rft.au=Mukhamedov,%20F.%20M.&rft.date=2023&rft.volume=216&rft.issue=2&rft.spage=1238&rft.epage=1253&rft.pages=1238-1253&rft.issn=0040-5779&rft.eissn=1573-9333&rft_id=info:doi/10.1134/S0040577923080123&rft_dat=%3Cproquest_sprin%3E2857427673%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2857427673&rft_id=info:pmid/&rfr_iscdi=true |