Stability of the Haagerup property under graph products

In this paper, we prove that any graph product of finitely many groups, all satisfying the Haagerup property (or Gromov’s a-T-menability) also satisfies the Haagerup property.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archiv der Mathematik 2023-09, Vol.121 (3), p.257-265
Hauptverfasser: Das, Shubhabrata, Ghosh, Partha Sarathi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 265
container_issue 3
container_start_page 257
container_title Archiv der Mathematik
container_volume 121
creator Das, Shubhabrata
Ghosh, Partha Sarathi
description In this paper, we prove that any graph product of finitely many groups, all satisfying the Haagerup property (or Gromov’s a-T-menability) also satisfies the Haagerup property.
doi_str_mv 10.1007/s00013-023-01904-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2857427131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2857427131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-22b49553bf66a9e99198c099bc664ac3eda179376ed63fde7b483c54122366533</originalsourceid><addsrcrecordid>eNp9UEtLxDAQDqJgXf0Dngqeo0kmzeMoi7rCggcVvIU0TXe7rG1N0sP-e7NW8OZhGJjvxXwIXVNySwmRd5EQQgETlodqwrE6QQXljGClQZ2iIuOAldIf5-gixl1mMyV1geRrsnW379KhHNoybX25snbjwzSWYxhGHzIw9Y0P5SbYcXs8NpNL8RKdtXYf_dXvXqD3x4e35QqvX56el_dr7JgkCTNWc11VULdCWO21plo5onXthODWgW8slRqk8I2AtvGy5gpcxSljIEQFsEA3s28O_pp8TGY3TKHPkYapSnImKdDMYjPLhSHG4Fszhu7ThoOhxBwLMnNBJhdkfgoyKotgFsVM7vPPf9b_qL4BQBxnNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857427131</pqid></control><display><type>article</type><title>Stability of the Haagerup property under graph products</title><source>SpringerNature Journals</source><creator>Das, Shubhabrata ; Ghosh, Partha Sarathi</creator><creatorcontrib>Das, Shubhabrata ; Ghosh, Partha Sarathi</creatorcontrib><description>In this paper, we prove that any graph product of finitely many groups, all satisfying the Haagerup property (or Gromov’s a-T-menability) also satisfies the Haagerup property.</description><identifier>ISSN: 0003-889X</identifier><identifier>EISSN: 1420-8938</identifier><identifier>DOI: 10.1007/s00013-023-01904-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Archiv der Mathematik, 2023-09, Vol.121 (3), p.257-265</ispartof><rights>Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-22b49553bf66a9e99198c099bc664ac3eda179376ed63fde7b483c54122366533</cites><orcidid>0009-0003-3380-9113</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00013-023-01904-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00013-023-01904-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Das, Shubhabrata</creatorcontrib><creatorcontrib>Ghosh, Partha Sarathi</creatorcontrib><title>Stability of the Haagerup property under graph products</title><title>Archiv der Mathematik</title><addtitle>Arch. Math</addtitle><description>In this paper, we prove that any graph product of finitely many groups, all satisfying the Haagerup property (or Gromov’s a-T-menability) also satisfies the Haagerup property.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0003-889X</issn><issn>1420-8938</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UEtLxDAQDqJgXf0Dngqeo0kmzeMoi7rCggcVvIU0TXe7rG1N0sP-e7NW8OZhGJjvxXwIXVNySwmRd5EQQgETlodqwrE6QQXljGClQZ2iIuOAldIf5-gixl1mMyV1geRrsnW379KhHNoybX25snbjwzSWYxhGHzIw9Y0P5SbYcXs8NpNL8RKdtXYf_dXvXqD3x4e35QqvX56el_dr7JgkCTNWc11VULdCWO21plo5onXthODWgW8slRqk8I2AtvGy5gpcxSljIEQFsEA3s28O_pp8TGY3TKHPkYapSnImKdDMYjPLhSHG4Fszhu7ThoOhxBwLMnNBJhdkfgoyKotgFsVM7vPPf9b_qL4BQBxnNg</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Das, Shubhabrata</creator><creator>Ghosh, Partha Sarathi</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0003-3380-9113</orcidid></search><sort><creationdate>20230901</creationdate><title>Stability of the Haagerup property under graph products</title><author>Das, Shubhabrata ; Ghosh, Partha Sarathi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-22b49553bf66a9e99198c099bc664ac3eda179376ed63fde7b483c54122366533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Shubhabrata</creatorcontrib><creatorcontrib>Ghosh, Partha Sarathi</creatorcontrib><collection>CrossRef</collection><jtitle>Archiv der Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Shubhabrata</au><au>Ghosh, Partha Sarathi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of the Haagerup property under graph products</atitle><jtitle>Archiv der Mathematik</jtitle><stitle>Arch. Math</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>121</volume><issue>3</issue><spage>257</spage><epage>265</epage><pages>257-265</pages><issn>0003-889X</issn><eissn>1420-8938</eissn><abstract>In this paper, we prove that any graph product of finitely many groups, all satisfying the Haagerup property (or Gromov’s a-T-menability) also satisfies the Haagerup property.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00013-023-01904-8</doi><tpages>9</tpages><orcidid>https://orcid.org/0009-0003-3380-9113</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-889X
ispartof Archiv der Mathematik, 2023-09, Vol.121 (3), p.257-265
issn 0003-889X
1420-8938
language eng
recordid cdi_proquest_journals_2857427131
source SpringerNature Journals
subjects Mathematics
Mathematics and Statistics
title Stability of the Haagerup property under graph products
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A23%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20the%20Haagerup%20property%20under%20graph%20products&rft.jtitle=Archiv%20der%20Mathematik&rft.au=Das,%20Shubhabrata&rft.date=2023-09-01&rft.volume=121&rft.issue=3&rft.spage=257&rft.epage=265&rft.pages=257-265&rft.issn=0003-889X&rft.eissn=1420-8938&rft_id=info:doi/10.1007/s00013-023-01904-8&rft_dat=%3Cproquest_cross%3E2857427131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2857427131&rft_id=info:pmid/&rfr_iscdi=true