Storms and pH of dam releases affect downstream phosphorus cycling in an arid regulated river
Reservoirs often bury phosphorus (P), leading to seasonal or persistent reductions in P supply to downstream rivers. Here we ask if observed variation in the chemistry of dam release waters stimulates downstream sediment P release and biological activity in an arid, oligotrophic system, the Colorado...
Gespeichert in:
Veröffentlicht in: | Biogeochemistry 2023-08, Vol.165 (1), p.57-74 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 74 |
---|---|
container_issue | 1 |
container_start_page | 57 |
container_title | Biogeochemistry |
container_volume | 165 |
creator | Deemer, Bridget R. H. Reibold, Robin Fatta, Anna Corman, Jessica R. Yackulic, Charles B. Reed, Sasha C. |
description | Reservoirs often bury phosphorus (P), leading to seasonal or persistent reductions in P supply to downstream rivers. Here we ask if observed variation in the chemistry of dam release waters stimulates downstream sediment P release and biological activity in an arid, oligotrophic system, the Colorado River below Lake Powell, Arizona, USA. We use bottle incubations to simulate a range of observed pH (6–8.8) and oxygen (0–9.4 mg L
−1
) levels, with the hypothesis that either oxygen concentrations or pH regulates P release from sediments to the water column. We found support for pH-mediated P release from calcite across the three sites we sampled. The magnitude of this effect was lower in bottles filled with tailwater sediment, but at downriver sites low pH resulted in declining water column dissolved inorganic nitrogen:soluble reactive P (DIN:SRP) ratios, which dropped below the Redfield ratio of 16:1, increasing water column total protein production, and down-regulating alkaline phosphatase production. Additional 7-day incubations showed that tributary storm inputs can temporarily elevate riverine P availability from |
doi_str_mv | 10.1007/s10533-023-01064-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2857170149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2857170149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-ea44b590ad44f1b7456edce1327722ce6aaecac2621d68f24b7e3e868040b0f83</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8BL16qk6-mPcqirrDgQQUvEtJ0unbptjVplf33RisIHjwMCTPPMwwvIacMLhiAvgwMlBAJ8FgMUpmoPTJjSotEMfW8T2bA0izhKhWH5CiEDQDkGsSMvDwMnd8GatuS9kvaVbS0W-qxQRswtqsK3UDL7qMNg8c46l-7EMuPgbqda-p2Tes26tT6uoziemzsgPFXv6M_JgeVbQKe_Lxz8nRz_bhYJqv727vF1SpxAsSQoJWyUDnYUsqKFVqqFEuHTHCtOXeYWovOOp5yVqZZxWWhUWCWZiChgCoTc3I-7e199zZiGMy2Dg6bxrbYjcEIpgTLtRY8omd_0E03-jZeZ3imNNPAZB4pPlHOdyF4rEzv6631O8PAfCVupsRNTNx8J25UlMQkhQi3a_S_q_-xPgHHBYOu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857170149</pqid></control><display><type>article</type><title>Storms and pH of dam releases affect downstream phosphorus cycling in an arid regulated river</title><source>Springer Nature - Complete Springer Journals</source><creator>Deemer, Bridget R. ; H. Reibold, Robin ; Fatta, Anna ; Corman, Jessica R. ; Yackulic, Charles B. ; Reed, Sasha C.</creator><creatorcontrib>Deemer, Bridget R. ; H. Reibold, Robin ; Fatta, Anna ; Corman, Jessica R. ; Yackulic, Charles B. ; Reed, Sasha C.</creatorcontrib><description>Reservoirs often bury phosphorus (P), leading to seasonal or persistent reductions in P supply to downstream rivers. Here we ask if observed variation in the chemistry of dam release waters stimulates downstream sediment P release and biological activity in an arid, oligotrophic system, the Colorado River below Lake Powell, Arizona, USA. We use bottle incubations to simulate a range of observed pH (6–8.8) and oxygen (0–9.4 mg L
−1
) levels, with the hypothesis that either oxygen concentrations or pH regulates P release from sediments to the water column. We found support for pH-mediated P release from calcite across the three sites we sampled. The magnitude of this effect was lower in bottles filled with tailwater sediment, but at downriver sites low pH resulted in declining water column dissolved inorganic nitrogen:soluble reactive P (DIN:SRP) ratios, which dropped below the Redfield ratio of 16:1, increasing water column total protein production, and down-regulating alkaline phosphatase production. Additional 7-day incubations showed that tributary storm inputs can temporarily elevate riverine P availability from < 1.5 µg L
−1
total dissolved P (TDP) pre-storm to 6.7 µg L
−1
TDP post storm. Taken together, our lab incubation and long-term observational results highlight the importance of pH, and ultimately reservoir management and storm dynamics, in regulating P availability and biological processes both now and into the future.</description><identifier>ISSN: 0168-2563</identifier><identifier>EISSN: 1573-515X</identifier><identifier>DOI: 10.1007/s10533-023-01064-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Alkaline phosphatase ; Alkalinity ; Ammonium nitrogen ; Aridity ; Arizona ; Availability ; bioactive properties ; Bioavailability ; Biogeochemistry ; Biogeosciences ; Biological activity ; Calcite ; Colorado River ; Dams ; Downstream ; Earth and Environmental Science ; Earth Sciences ; Ecosystems ; Environmental Chemistry ; Food chains ; Lakes ; Life Sciences ; Oxygen ; pH effects ; Phosphatase ; Phosphorus ; protein content ; protein synthesis ; Reservoir management ; Reservoirs ; riparian areas ; River ecology ; River regulations ; Rivers ; Sediment ; Sediments ; Storms ; Tailwater ; Tributaries ; Water circulation ; Water column</subject><ispartof>Biogeochemistry, 2023-08, Vol.165 (1), p.57-74</ispartof><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023</rights><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-ea44b590ad44f1b7456edce1327722ce6aaecac2621d68f24b7e3e868040b0f83</cites><orcidid>0000-0002-5845-1002 ; 0000-0002-2633-8080 ; 0000-0002-8597-8619 ; 0000-0002-3323-487X ; 0000-0001-9661-0724</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10533-023-01064-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10533-023-01064-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Deemer, Bridget R.</creatorcontrib><creatorcontrib>H. Reibold, Robin</creatorcontrib><creatorcontrib>Fatta, Anna</creatorcontrib><creatorcontrib>Corman, Jessica R.</creatorcontrib><creatorcontrib>Yackulic, Charles B.</creatorcontrib><creatorcontrib>Reed, Sasha C.</creatorcontrib><title>Storms and pH of dam releases affect downstream phosphorus cycling in an arid regulated river</title><title>Biogeochemistry</title><addtitle>Biogeochemistry</addtitle><description>Reservoirs often bury phosphorus (P), leading to seasonal or persistent reductions in P supply to downstream rivers. Here we ask if observed variation in the chemistry of dam release waters stimulates downstream sediment P release and biological activity in an arid, oligotrophic system, the Colorado River below Lake Powell, Arizona, USA. We use bottle incubations to simulate a range of observed pH (6–8.8) and oxygen (0–9.4 mg L
−1
) levels, with the hypothesis that either oxygen concentrations or pH regulates P release from sediments to the water column. We found support for pH-mediated P release from calcite across the three sites we sampled. The magnitude of this effect was lower in bottles filled with tailwater sediment, but at downriver sites low pH resulted in declining water column dissolved inorganic nitrogen:soluble reactive P (DIN:SRP) ratios, which dropped below the Redfield ratio of 16:1, increasing water column total protein production, and down-regulating alkaline phosphatase production. Additional 7-day incubations showed that tributary storm inputs can temporarily elevate riverine P availability from < 1.5 µg L
−1
total dissolved P (TDP) pre-storm to 6.7 µg L
−1
TDP post storm. Taken together, our lab incubation and long-term observational results highlight the importance of pH, and ultimately reservoir management and storm dynamics, in regulating P availability and biological processes both now and into the future.</description><subject>Alkaline phosphatase</subject><subject>Alkalinity</subject><subject>Ammonium nitrogen</subject><subject>Aridity</subject><subject>Arizona</subject><subject>Availability</subject><subject>bioactive properties</subject><subject>Bioavailability</subject><subject>Biogeochemistry</subject><subject>Biogeosciences</subject><subject>Biological activity</subject><subject>Calcite</subject><subject>Colorado River</subject><subject>Dams</subject><subject>Downstream</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecosystems</subject><subject>Environmental Chemistry</subject><subject>Food chains</subject><subject>Lakes</subject><subject>Life Sciences</subject><subject>Oxygen</subject><subject>pH effects</subject><subject>Phosphatase</subject><subject>Phosphorus</subject><subject>protein content</subject><subject>protein synthesis</subject><subject>Reservoir management</subject><subject>Reservoirs</subject><subject>riparian areas</subject><subject>River ecology</subject><subject>River regulations</subject><subject>Rivers</subject><subject>Sediment</subject><subject>Sediments</subject><subject>Storms</subject><subject>Tailwater</subject><subject>Tributaries</subject><subject>Water circulation</subject><subject>Water column</subject><issn>0168-2563</issn><issn>1573-515X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8BL16qk6-mPcqirrDgQQUvEtJ0unbptjVplf33RisIHjwMCTPPMwwvIacMLhiAvgwMlBAJ8FgMUpmoPTJjSotEMfW8T2bA0izhKhWH5CiEDQDkGsSMvDwMnd8GatuS9kvaVbS0W-qxQRswtqsK3UDL7qMNg8c46l-7EMuPgbqda-p2Tes26tT6uoziemzsgPFXv6M_JgeVbQKe_Lxz8nRz_bhYJqv727vF1SpxAsSQoJWyUDnYUsqKFVqqFEuHTHCtOXeYWovOOp5yVqZZxWWhUWCWZiChgCoTc3I-7e199zZiGMy2Dg6bxrbYjcEIpgTLtRY8omd_0E03-jZeZ3imNNPAZB4pPlHOdyF4rEzv6631O8PAfCVupsRNTNx8J25UlMQkhQi3a_S_q_-xPgHHBYOu</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Deemer, Bridget R.</creator><creator>H. Reibold, Robin</creator><creator>Fatta, Anna</creator><creator>Corman, Jessica R.</creator><creator>Yackulic, Charles B.</creator><creator>Reed, Sasha C.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-5845-1002</orcidid><orcidid>https://orcid.org/0000-0002-2633-8080</orcidid><orcidid>https://orcid.org/0000-0002-8597-8619</orcidid><orcidid>https://orcid.org/0000-0002-3323-487X</orcidid><orcidid>https://orcid.org/0000-0001-9661-0724</orcidid></search><sort><creationdate>20230801</creationdate><title>Storms and pH of dam releases affect downstream phosphorus cycling in an arid regulated river</title><author>Deemer, Bridget R. ; H. Reibold, Robin ; Fatta, Anna ; Corman, Jessica R. ; Yackulic, Charles B. ; Reed, Sasha C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-ea44b590ad44f1b7456edce1327722ce6aaecac2621d68f24b7e3e868040b0f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alkaline phosphatase</topic><topic>Alkalinity</topic><topic>Ammonium nitrogen</topic><topic>Aridity</topic><topic>Arizona</topic><topic>Availability</topic><topic>bioactive properties</topic><topic>Bioavailability</topic><topic>Biogeochemistry</topic><topic>Biogeosciences</topic><topic>Biological activity</topic><topic>Calcite</topic><topic>Colorado River</topic><topic>Dams</topic><topic>Downstream</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecosystems</topic><topic>Environmental Chemistry</topic><topic>Food chains</topic><topic>Lakes</topic><topic>Life Sciences</topic><topic>Oxygen</topic><topic>pH effects</topic><topic>Phosphatase</topic><topic>Phosphorus</topic><topic>protein content</topic><topic>protein synthesis</topic><topic>Reservoir management</topic><topic>Reservoirs</topic><topic>riparian areas</topic><topic>River ecology</topic><topic>River regulations</topic><topic>Rivers</topic><topic>Sediment</topic><topic>Sediments</topic><topic>Storms</topic><topic>Tailwater</topic><topic>Tributaries</topic><topic>Water circulation</topic><topic>Water column</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deemer, Bridget R.</creatorcontrib><creatorcontrib>H. Reibold, Robin</creatorcontrib><creatorcontrib>Fatta, Anna</creatorcontrib><creatorcontrib>Corman, Jessica R.</creatorcontrib><creatorcontrib>Yackulic, Charles B.</creatorcontrib><creatorcontrib>Reed, Sasha C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Biogeochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deemer, Bridget R.</au><au>H. Reibold, Robin</au><au>Fatta, Anna</au><au>Corman, Jessica R.</au><au>Yackulic, Charles B.</au><au>Reed, Sasha C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Storms and pH of dam releases affect downstream phosphorus cycling in an arid regulated river</atitle><jtitle>Biogeochemistry</jtitle><stitle>Biogeochemistry</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>165</volume><issue>1</issue><spage>57</spage><epage>74</epage><pages>57-74</pages><issn>0168-2563</issn><eissn>1573-515X</eissn><abstract>Reservoirs often bury phosphorus (P), leading to seasonal or persistent reductions in P supply to downstream rivers. Here we ask if observed variation in the chemistry of dam release waters stimulates downstream sediment P release and biological activity in an arid, oligotrophic system, the Colorado River below Lake Powell, Arizona, USA. We use bottle incubations to simulate a range of observed pH (6–8.8) and oxygen (0–9.4 mg L
−1
) levels, with the hypothesis that either oxygen concentrations or pH regulates P release from sediments to the water column. We found support for pH-mediated P release from calcite across the three sites we sampled. The magnitude of this effect was lower in bottles filled with tailwater sediment, but at downriver sites low pH resulted in declining water column dissolved inorganic nitrogen:soluble reactive P (DIN:SRP) ratios, which dropped below the Redfield ratio of 16:1, increasing water column total protein production, and down-regulating alkaline phosphatase production. Additional 7-day incubations showed that tributary storm inputs can temporarily elevate riverine P availability from < 1.5 µg L
−1
total dissolved P (TDP) pre-storm to 6.7 µg L
−1
TDP post storm. Taken together, our lab incubation and long-term observational results highlight the importance of pH, and ultimately reservoir management and storm dynamics, in regulating P availability and biological processes both now and into the future.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10533-023-01064-5</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5845-1002</orcidid><orcidid>https://orcid.org/0000-0002-2633-8080</orcidid><orcidid>https://orcid.org/0000-0002-8597-8619</orcidid><orcidid>https://orcid.org/0000-0002-3323-487X</orcidid><orcidid>https://orcid.org/0000-0001-9661-0724</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-2563 |
ispartof | Biogeochemistry, 2023-08, Vol.165 (1), p.57-74 |
issn | 0168-2563 1573-515X |
language | eng |
recordid | cdi_proquest_journals_2857170149 |
source | Springer Nature - Complete Springer Journals |
subjects | Alkaline phosphatase Alkalinity Ammonium nitrogen Aridity Arizona Availability bioactive properties Bioavailability Biogeochemistry Biogeosciences Biological activity Calcite Colorado River Dams Downstream Earth and Environmental Science Earth Sciences Ecosystems Environmental Chemistry Food chains Lakes Life Sciences Oxygen pH effects Phosphatase Phosphorus protein content protein synthesis Reservoir management Reservoirs riparian areas River ecology River regulations Rivers Sediment Sediments Storms Tailwater Tributaries Water circulation Water column |
title | Storms and pH of dam releases affect downstream phosphorus cycling in an arid regulated river |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A25%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Storms%20and%20pH%20of%20dam%20releases%20affect%20downstream%20phosphorus%20cycling%20in%20an%20arid%20regulated%20river&rft.jtitle=Biogeochemistry&rft.au=Deemer,%20Bridget%20R.&rft.date=2023-08-01&rft.volume=165&rft.issue=1&rft.spage=57&rft.epage=74&rft.pages=57-74&rft.issn=0168-2563&rft.eissn=1573-515X&rft_id=info:doi/10.1007/s10533-023-01064-5&rft_dat=%3Cproquest_cross%3E2857170149%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2857170149&rft_id=info:pmid/&rfr_iscdi=true |