IDF-Sign: Addressing Inconsistent Depth Features for Dynamic Sign Word Recognition

Inconsistent hand and body features pose barriers to sign language recognition and translation leading to unsatisfactory models. Existing recognition models are built up on the spatial-temporal depth S_{p} features. Finding suitable expert features for the S_{p} model is challenging especially f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023, Vol.11, p.88511-88526
Hauptverfasser: Abdullahi, Sunusi Bala, Chamnongthai, Kosin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 88526
container_issue
container_start_page 88511
container_title IEEE access
container_volume 11
creator Abdullahi, Sunusi Bala
Chamnongthai, Kosin
description Inconsistent hand and body features pose barriers to sign language recognition and translation leading to unsatisfactory models. Existing recognition models are built up on the spatial-temporal depth S_{p} features. Finding suitable expert features for the S_{p} model is challenging especially for dynamic sign words because many inconsistent features exist across hand motions and shapes. In this article, we propose IDF-Sign: an efficient and consistent S_{p} model from a spatial-temporal multivariate pairwise consistency feature ranking (PairCFR) approach. The temporal features are obtained by computing the 3D position vector of skeletal hand joint coordinates, while the spatial features were obtained by taking every ten spatial coordinates in the 3D video frames and averaging it and doing so until the end of the frames. The PairCFR was used to rank and select the best S_{p} model features at different feature thresholds. We employed a threshold selection to compute a mid-point value of each ranked feature according to its weight. The receiver operating characteristics (ROC) scheme was employed to identify the relationship between the sensitive parameters and the S_{p} features, and the obtained values were utilized as modeling inputs. To verify the IDF-Sign, we design a real-life experiment with a leap motion sensor (LMS) consisting of ten signers with a total of ninety dynamic sign words. LMS provides the depth videos, since depth videos are too dense for the S_{p} model to treat directly, we read the depth videos in comma-separated files in real time. Extensive IDF-Sign evaluations using machine learning on ASL, GSL, DSG, and ASL-similar datasets prove the Optimized Forest achieved an average recognition performance of 95%, 78%, 65.07%, and 95% of the top-1, respectively.
doi_str_mv 10.1109/ACCESS.2023.3305255
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2857104560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10216946</ieee_id><doaj_id>oai_doaj_org_article_08c7157de981402ca472366bd74ea476</doaj_id><sourcerecordid>2857104560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-77abddeb01abb2c9e3ece2bcdc148b2df241e175412414900a3f4c2cf48a50a73</originalsourceid><addsrcrecordid>eNpNkU9LAzEQxRdRUKqfQA8Bz1vzd7PrrbRWC4JgFY8hm8zWFE1qsj3025u6RZpLHjPz3gz8iuKa4DEhuLmbTKcPy-WYYsrGjGFBhTgpLiipmpIJVp0e6fPiKqU1zq_OJSEvitfFbF4u3crfo4m1EVJyfoUW3gSfXOrB92gGm_4TzUH329xHXYhotvP62xm0N6KPEC16BRNW3vUu-MvirNNfCa4O_6h4nz-8TZ_K55fHxXTyXBqOm76UUrfWQouJbltqGmBggLbGGsLrltqOcgJECk6y4A3GmnXcUNPxWgusJRsViyHXBr1Wm-i-ddypoJ36K4S4Ujr2znyBwrWRREgLTU04pkZzSVlVtVZyyLrKWbdD1iaGny2kXq3DNvp8vqK1kARzUeE8xYYpE0NKEbr_rQSrPQs1sFB7FurAIrtuBpcDgCPHngqv2C9_ZoQ0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857104560</pqid></control><display><type>article</type><title>IDF-Sign: Addressing Inconsistent Depth Features for Dynamic Sign Word Recognition</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Abdullahi, Sunusi Bala ; Chamnongthai, Kosin</creator><creatorcontrib>Abdullahi, Sunusi Bala ; Chamnongthai, Kosin</creatorcontrib><description><![CDATA[Inconsistent hand and body features pose barriers to sign language recognition and translation leading to unsatisfactory models. Existing recognition models are built up on the spatial-temporal depth <inline-formula> <tex-math notation="LaTeX">S_{p} </tex-math></inline-formula> features. Finding suitable expert features for the <inline-formula> <tex-math notation="LaTeX">S_{p} </tex-math></inline-formula> model is challenging especially for dynamic sign words because many inconsistent features exist across hand motions and shapes. In this article, we propose IDF-Sign: an efficient and consistent <inline-formula> <tex-math notation="LaTeX">S_{p} </tex-math></inline-formula> model from a spatial-temporal multivariate pairwise consistency feature ranking (PairCFR) approach. The temporal features are obtained by computing the 3D position vector of skeletal hand joint coordinates, while the spatial features were obtained by taking every ten spatial coordinates in the 3D video frames and averaging it and doing so until the end of the frames. The PairCFR was used to rank and select the best <inline-formula> <tex-math notation="LaTeX">S_{p} </tex-math></inline-formula> model features at different feature thresholds. We employed a threshold selection to compute a mid-point value of each ranked feature according to its weight. The receiver operating characteristics (ROC) scheme was employed to identify the relationship between the sensitive parameters and the <inline-formula> <tex-math notation="LaTeX">S_{p} </tex-math></inline-formula> features, and the obtained values were utilized as modeling inputs. To verify the IDF-Sign, we design a real-life experiment with a leap motion sensor (LMS) consisting of ten signers with a total of ninety dynamic sign words. LMS provides the depth videos, since depth videos are too dense for the <inline-formula> <tex-math notation="LaTeX">S_{p} </tex-math></inline-formula> model to treat directly, we read the depth videos in comma-separated files in real time. Extensive IDF-Sign evaluations using machine learning on ASL, GSL, DSG, and ASL-similar datasets prove the Optimized Forest achieved an average recognition performance of 95%, 78%, 65.07%, and 95% of the top-1, respectively.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3305255</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>3D video processing ; Assistive technologies ; Automatic sign language recognition ; Computational modeling ; depth sensor ; Feature extraction ; feature selection ; Frames (data processing) ; Gesture recognition ; hand gesture ; Hidden Markov models ; Image processing ; Machine learning ; Motion sensors ; Parameter identification ; Parameter sensitivity ; Pattern recognition ; Sign language ; Solid modeling ; Streaming media ; Three-dimensional displays ; Video</subject><ispartof>IEEE access, 2023, Vol.11, p.88511-88526</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-77abddeb01abb2c9e3ece2bcdc148b2df241e175412414900a3f4c2cf48a50a73</citedby><cites>FETCH-LOGICAL-c409t-77abddeb01abb2c9e3ece2bcdc148b2df241e175412414900a3f4c2cf48a50a73</cites><orcidid>0000-0003-1509-5754 ; 0000-0003-1898-7352</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10216946$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Abdullahi, Sunusi Bala</creatorcontrib><creatorcontrib>Chamnongthai, Kosin</creatorcontrib><title>IDF-Sign: Addressing Inconsistent Depth Features for Dynamic Sign Word Recognition</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[Inconsistent hand and body features pose barriers to sign language recognition and translation leading to unsatisfactory models. Existing recognition models are built up on the spatial-temporal depth <inline-formula> <tex-math notation="LaTeX">S_{p} </tex-math></inline-formula> features. Finding suitable expert features for the <inline-formula> <tex-math notation="LaTeX">S_{p} </tex-math></inline-formula> model is challenging especially for dynamic sign words because many inconsistent features exist across hand motions and shapes. In this article, we propose IDF-Sign: an efficient and consistent <inline-formula> <tex-math notation="LaTeX">S_{p} </tex-math></inline-formula> model from a spatial-temporal multivariate pairwise consistency feature ranking (PairCFR) approach. The temporal features are obtained by computing the 3D position vector of skeletal hand joint coordinates, while the spatial features were obtained by taking every ten spatial coordinates in the 3D video frames and averaging it and doing so until the end of the frames. The PairCFR was used to rank and select the best <inline-formula> <tex-math notation="LaTeX">S_{p} </tex-math></inline-formula> model features at different feature thresholds. We employed a threshold selection to compute a mid-point value of each ranked feature according to its weight. The receiver operating characteristics (ROC) scheme was employed to identify the relationship between the sensitive parameters and the <inline-formula> <tex-math notation="LaTeX">S_{p} </tex-math></inline-formula> features, and the obtained values were utilized as modeling inputs. To verify the IDF-Sign, we design a real-life experiment with a leap motion sensor (LMS) consisting of ten signers with a total of ninety dynamic sign words. LMS provides the depth videos, since depth videos are too dense for the <inline-formula> <tex-math notation="LaTeX">S_{p} </tex-math></inline-formula> model to treat directly, we read the depth videos in comma-separated files in real time. Extensive IDF-Sign evaluations using machine learning on ASL, GSL, DSG, and ASL-similar datasets prove the Optimized Forest achieved an average recognition performance of 95%, 78%, 65.07%, and 95% of the top-1, respectively.]]></description><subject>3D video processing</subject><subject>Assistive technologies</subject><subject>Automatic sign language recognition</subject><subject>Computational modeling</subject><subject>depth sensor</subject><subject>Feature extraction</subject><subject>feature selection</subject><subject>Frames (data processing)</subject><subject>Gesture recognition</subject><subject>hand gesture</subject><subject>Hidden Markov models</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>Motion sensors</subject><subject>Parameter identification</subject><subject>Parameter sensitivity</subject><subject>Pattern recognition</subject><subject>Sign language</subject><subject>Solid modeling</subject><subject>Streaming media</subject><subject>Three-dimensional displays</subject><subject>Video</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9LAzEQxRdRUKqfQA8Bz1vzd7PrrbRWC4JgFY8hm8zWFE1qsj3025u6RZpLHjPz3gz8iuKa4DEhuLmbTKcPy-WYYsrGjGFBhTgpLiipmpIJVp0e6fPiKqU1zq_OJSEvitfFbF4u3crfo4m1EVJyfoUW3gSfXOrB92gGm_4TzUH329xHXYhotvP62xm0N6KPEC16BRNW3vUu-MvirNNfCa4O_6h4nz-8TZ_K55fHxXTyXBqOm76UUrfWQouJbltqGmBggLbGGsLrltqOcgJECk6y4A3GmnXcUNPxWgusJRsViyHXBr1Wm-i-ddypoJ36K4S4Ujr2znyBwrWRREgLTU04pkZzSVlVtVZyyLrKWbdD1iaGny2kXq3DNvp8vqK1kARzUeE8xYYpE0NKEbr_rQSrPQs1sFB7FurAIrtuBpcDgCPHngqv2C9_ZoQ0</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Abdullahi, Sunusi Bala</creator><creator>Chamnongthai, Kosin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1509-5754</orcidid><orcidid>https://orcid.org/0000-0003-1898-7352</orcidid></search><sort><creationdate>2023</creationdate><title>IDF-Sign: Addressing Inconsistent Depth Features for Dynamic Sign Word Recognition</title><author>Abdullahi, Sunusi Bala ; Chamnongthai, Kosin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-77abddeb01abb2c9e3ece2bcdc148b2df241e175412414900a3f4c2cf48a50a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D video processing</topic><topic>Assistive technologies</topic><topic>Automatic sign language recognition</topic><topic>Computational modeling</topic><topic>depth sensor</topic><topic>Feature extraction</topic><topic>feature selection</topic><topic>Frames (data processing)</topic><topic>Gesture recognition</topic><topic>hand gesture</topic><topic>Hidden Markov models</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>Motion sensors</topic><topic>Parameter identification</topic><topic>Parameter sensitivity</topic><topic>Pattern recognition</topic><topic>Sign language</topic><topic>Solid modeling</topic><topic>Streaming media</topic><topic>Three-dimensional displays</topic><topic>Video</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdullahi, Sunusi Bala</creatorcontrib><creatorcontrib>Chamnongthai, Kosin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdullahi, Sunusi Bala</au><au>Chamnongthai, Kosin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IDF-Sign: Addressing Inconsistent Depth Features for Dynamic Sign Word Recognition</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>88511</spage><epage>88526</epage><pages>88511-88526</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[Inconsistent hand and body features pose barriers to sign language recognition and translation leading to unsatisfactory models. Existing recognition models are built up on the spatial-temporal depth <inline-formula> <tex-math notation="LaTeX">S_{p} </tex-math></inline-formula> features. Finding suitable expert features for the <inline-formula> <tex-math notation="LaTeX">S_{p} </tex-math></inline-formula> model is challenging especially for dynamic sign words because many inconsistent features exist across hand motions and shapes. In this article, we propose IDF-Sign: an efficient and consistent <inline-formula> <tex-math notation="LaTeX">S_{p} </tex-math></inline-formula> model from a spatial-temporal multivariate pairwise consistency feature ranking (PairCFR) approach. The temporal features are obtained by computing the 3D position vector of skeletal hand joint coordinates, while the spatial features were obtained by taking every ten spatial coordinates in the 3D video frames and averaging it and doing so until the end of the frames. The PairCFR was used to rank and select the best <inline-formula> <tex-math notation="LaTeX">S_{p} </tex-math></inline-formula> model features at different feature thresholds. We employed a threshold selection to compute a mid-point value of each ranked feature according to its weight. The receiver operating characteristics (ROC) scheme was employed to identify the relationship between the sensitive parameters and the <inline-formula> <tex-math notation="LaTeX">S_{p} </tex-math></inline-formula> features, and the obtained values were utilized as modeling inputs. To verify the IDF-Sign, we design a real-life experiment with a leap motion sensor (LMS) consisting of ten signers with a total of ninety dynamic sign words. LMS provides the depth videos, since depth videos are too dense for the <inline-formula> <tex-math notation="LaTeX">S_{p} </tex-math></inline-formula> model to treat directly, we read the depth videos in comma-separated files in real time. Extensive IDF-Sign evaluations using machine learning on ASL, GSL, DSG, and ASL-similar datasets prove the Optimized Forest achieved an average recognition performance of 95%, 78%, 65.07%, and 95% of the top-1, respectively.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3305255</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1509-5754</orcidid><orcidid>https://orcid.org/0000-0003-1898-7352</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023, Vol.11, p.88511-88526
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2857104560
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects 3D video processing
Assistive technologies
Automatic sign language recognition
Computational modeling
depth sensor
Feature extraction
feature selection
Frames (data processing)
Gesture recognition
hand gesture
Hidden Markov models
Image processing
Machine learning
Motion sensors
Parameter identification
Parameter sensitivity
Pattern recognition
Sign language
Solid modeling
Streaming media
Three-dimensional displays
Video
title IDF-Sign: Addressing Inconsistent Depth Features for Dynamic Sign Word Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A55%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IDF-Sign:%20Addressing%20Inconsistent%20Depth%20Features%20for%20Dynamic%20Sign%20Word%20Recognition&rft.jtitle=IEEE%20access&rft.au=Abdullahi,%20Sunusi%20Bala&rft.date=2023&rft.volume=11&rft.spage=88511&rft.epage=88526&rft.pages=88511-88526&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3305255&rft_dat=%3Cproquest_cross%3E2857104560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2857104560&rft_id=info:pmid/&rft_ieee_id=10216946&rft_doaj_id=oai_doaj_org_article_08c7157de981402ca472366bd74ea476&rfr_iscdi=true