Evaluation of the Improved Extreme Learning Machine for Machine Failure Multiclass Classification
The recent advancements in sensor, big data, and artificial intelligence (AI) have introduced digital transformation in the manufacturing industry. Machine maintenance has been one of the central subjects in digital transformation in the manufacturing industry. Predictive maintenance is the latest m...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2023-08, Vol.12 (16), p.3501 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | 3501 |
container_title | Electronics (Basel) |
container_volume | 12 |
creator | Surantha, Nico Gozali, Isabella D. |
description | The recent advancements in sensor, big data, and artificial intelligence (AI) have introduced digital transformation in the manufacturing industry. Machine maintenance has been one of the central subjects in digital transformation in the manufacturing industry. Predictive maintenance is the latest maintenance strategy that relies on data and artificial intelligence techniques to predict machine failure and remaining life assessment. However, the imbalanced nature of machine data can result in inaccurate machine failure predictions. This research will use techniques and algorithms centered on Extreme Learning Machine (ELM) and their development to find a suitable algorithm to overcome imbalanced machine datasets. The dataset used in this research is Microsoft Azure for Predictive Maintenance, which has significantly imbalanced failure classes. Four improved ELM methods are evaluated in this paper, i.e., extreme machine learning with under-sampling/over-sampling, weighted-ELM, and weighted-ELM with radial basis function (RBF) kernel and particle swarm optimization (PSO). Our simulation results show that the combination of ELM with under-sampling gained the highest performance result, in which the average F1-score reached 0.9541 for binary classification and 0.9555 for multiclass classification. |
doi_str_mv | 10.3390/electronics12163501 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2857017702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762480862</galeid><sourcerecordid>A762480862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-e849c4423c1a2734c0e8fd34b5d9e4ddcb15329802973206b7c973492c2907183</originalsourceid><addsrcrecordid>eNptUE1LAzEQXUTBUvsLvAQ8b83XbjbHUlottHjR85JmJ23KblKTbNF_79aKeHAGZh7DvDfDy7J7gqeMSfwILegUvLM6EkpKVmBylY0oFjKXVNLrP_g2m8R4wENIwiqGR5lanFTbq2S9Q96gtAe06o7Bn6BBi48UoAO0BhWcdTu0UXpvHSDjwy9eKtv2AdCmb5PVrYoRzc_VGqu_Ze-yG6PaCJOfPs7elovX-XO-fnlazWfrXLOSpBwqLjXnlGmiqGBcY6hMw_i2aCTwptFbUjAqK0ylYBSXW6EHwCXVVGJBKjbOHi66w_fvPcRUH3wf3HCyplUhMBEC02FretnaqRZq64xPQekhG-is9g6MHeYzUVJe4ao8E9iFoIOPMYCpj8F2KnzWBNdn_-t__Gdf3RZ67A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857017702</pqid></control><display><type>article</type><title>Evaluation of the Improved Extreme Learning Machine for Machine Failure Multiclass Classification</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB Electronic Journals Library</source><creator>Surantha, Nico ; Gozali, Isabella D.</creator><creatorcontrib>Surantha, Nico ; Gozali, Isabella D.</creatorcontrib><description>The recent advancements in sensor, big data, and artificial intelligence (AI) have introduced digital transformation in the manufacturing industry. Machine maintenance has been one of the central subjects in digital transformation in the manufacturing industry. Predictive maintenance is the latest maintenance strategy that relies on data and artificial intelligence techniques to predict machine failure and remaining life assessment. However, the imbalanced nature of machine data can result in inaccurate machine failure predictions. This research will use techniques and algorithms centered on Extreme Learning Machine (ELM) and their development to find a suitable algorithm to overcome imbalanced machine datasets. The dataset used in this research is Microsoft Azure for Predictive Maintenance, which has significantly imbalanced failure classes. Four improved ELM methods are evaluated in this paper, i.e., extreme machine learning with under-sampling/over-sampling, weighted-ELM, and weighted-ELM with radial basis function (RBF) kernel and particle swarm optimization (PSO). Our simulation results show that the combination of ELM with under-sampling gained the highest performance result, in which the average F1-score reached 0.9541 for binary classification and 0.9555 for multiclass classification.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12163501</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Artificial neural networks ; Big Data ; Classification ; Data collection ; Datasets ; Failure ; Feature selection ; Life assessment ; Machine learning ; Maintenance ; Maintenance costs ; Manufacturing ; Mathematical optimization ; Particle swarm optimization ; Predictive maintenance ; Preventive maintenance ; Radial basis function ; Research methodology ; Sampling ; Sensors ; Service life (Engineering) ; Swarm intelligence</subject><ispartof>Electronics (Basel), 2023-08, Vol.12 (16), p.3501</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-e849c4423c1a2734c0e8fd34b5d9e4ddcb15329802973206b7c973492c2907183</citedby><cites>FETCH-LOGICAL-c361t-e849c4423c1a2734c0e8fd34b5d9e4ddcb15329802973206b7c973492c2907183</cites><orcidid>0000-0002-7500-3199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Surantha, Nico</creatorcontrib><creatorcontrib>Gozali, Isabella D.</creatorcontrib><title>Evaluation of the Improved Extreme Learning Machine for Machine Failure Multiclass Classification</title><title>Electronics (Basel)</title><description>The recent advancements in sensor, big data, and artificial intelligence (AI) have introduced digital transformation in the manufacturing industry. Machine maintenance has been one of the central subjects in digital transformation in the manufacturing industry. Predictive maintenance is the latest maintenance strategy that relies on data and artificial intelligence techniques to predict machine failure and remaining life assessment. However, the imbalanced nature of machine data can result in inaccurate machine failure predictions. This research will use techniques and algorithms centered on Extreme Learning Machine (ELM) and their development to find a suitable algorithm to overcome imbalanced machine datasets. The dataset used in this research is Microsoft Azure for Predictive Maintenance, which has significantly imbalanced failure classes. Four improved ELM methods are evaluated in this paper, i.e., extreme machine learning with under-sampling/over-sampling, weighted-ELM, and weighted-ELM with radial basis function (RBF) kernel and particle swarm optimization (PSO). Our simulation results show that the combination of ELM with under-sampling gained the highest performance result, in which the average F1-score reached 0.9541 for binary classification and 0.9555 for multiclass classification.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Big Data</subject><subject>Classification</subject><subject>Data collection</subject><subject>Datasets</subject><subject>Failure</subject><subject>Feature selection</subject><subject>Life assessment</subject><subject>Machine learning</subject><subject>Maintenance</subject><subject>Maintenance costs</subject><subject>Manufacturing</subject><subject>Mathematical optimization</subject><subject>Particle swarm optimization</subject><subject>Predictive maintenance</subject><subject>Preventive maintenance</subject><subject>Radial basis function</subject><subject>Research methodology</subject><subject>Sampling</subject><subject>Sensors</subject><subject>Service life (Engineering)</subject><subject>Swarm intelligence</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUE1LAzEQXUTBUvsLvAQ8b83XbjbHUlottHjR85JmJ23KblKTbNF_79aKeHAGZh7DvDfDy7J7gqeMSfwILegUvLM6EkpKVmBylY0oFjKXVNLrP_g2m8R4wENIwiqGR5lanFTbq2S9Q96gtAe06o7Bn6BBi48UoAO0BhWcdTu0UXpvHSDjwy9eKtv2AdCmb5PVrYoRzc_VGqu_Ze-yG6PaCJOfPs7elovX-XO-fnlazWfrXLOSpBwqLjXnlGmiqGBcY6hMw_i2aCTwptFbUjAqK0ylYBSXW6EHwCXVVGJBKjbOHi66w_fvPcRUH3wf3HCyplUhMBEC02FretnaqRZq64xPQekhG-is9g6MHeYzUVJe4ao8E9iFoIOPMYCpj8F2KnzWBNdn_-t__Gdf3RZ67A</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Surantha, Nico</creator><creator>Gozali, Isabella D.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7500-3199</orcidid></search><sort><creationdate>20230801</creationdate><title>Evaluation of the Improved Extreme Learning Machine for Machine Failure Multiclass Classification</title><author>Surantha, Nico ; Gozali, Isabella D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-e849c4423c1a2734c0e8fd34b5d9e4ddcb15329802973206b7c973492c2907183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Big Data</topic><topic>Classification</topic><topic>Data collection</topic><topic>Datasets</topic><topic>Failure</topic><topic>Feature selection</topic><topic>Life assessment</topic><topic>Machine learning</topic><topic>Maintenance</topic><topic>Maintenance costs</topic><topic>Manufacturing</topic><topic>Mathematical optimization</topic><topic>Particle swarm optimization</topic><topic>Predictive maintenance</topic><topic>Preventive maintenance</topic><topic>Radial basis function</topic><topic>Research methodology</topic><topic>Sampling</topic><topic>Sensors</topic><topic>Service life (Engineering)</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Surantha, Nico</creatorcontrib><creatorcontrib>Gozali, Isabella D.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Surantha, Nico</au><au>Gozali, Isabella D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of the Improved Extreme Learning Machine for Machine Failure Multiclass Classification</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>12</volume><issue>16</issue><spage>3501</spage><pages>3501-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>The recent advancements in sensor, big data, and artificial intelligence (AI) have introduced digital transformation in the manufacturing industry. Machine maintenance has been one of the central subjects in digital transformation in the manufacturing industry. Predictive maintenance is the latest maintenance strategy that relies on data and artificial intelligence techniques to predict machine failure and remaining life assessment. However, the imbalanced nature of machine data can result in inaccurate machine failure predictions. This research will use techniques and algorithms centered on Extreme Learning Machine (ELM) and their development to find a suitable algorithm to overcome imbalanced machine datasets. The dataset used in this research is Microsoft Azure for Predictive Maintenance, which has significantly imbalanced failure classes. Four improved ELM methods are evaluated in this paper, i.e., extreme machine learning with under-sampling/over-sampling, weighted-ELM, and weighted-ELM with radial basis function (RBF) kernel and particle swarm optimization (PSO). Our simulation results show that the combination of ELM with under-sampling gained the highest performance result, in which the average F1-score reached 0.9541 for binary classification and 0.9555 for multiclass classification.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12163501</doi><orcidid>https://orcid.org/0000-0002-7500-3199</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2023-08, Vol.12 (16), p.3501 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2857017702 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB Electronic Journals Library |
subjects | Accuracy Algorithms Artificial intelligence Artificial neural networks Big Data Classification Data collection Datasets Failure Feature selection Life assessment Machine learning Maintenance Maintenance costs Manufacturing Mathematical optimization Particle swarm optimization Predictive maintenance Preventive maintenance Radial basis function Research methodology Sampling Sensors Service life (Engineering) Swarm intelligence |
title | Evaluation of the Improved Extreme Learning Machine for Machine Failure Multiclass Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A00%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20the%20Improved%20Extreme%20Learning%20Machine%20for%20Machine%20Failure%20Multiclass%20Classification&rft.jtitle=Electronics%20(Basel)&rft.au=Surantha,%20Nico&rft.date=2023-08-01&rft.volume=12&rft.issue=16&rft.spage=3501&rft.pages=3501-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12163501&rft_dat=%3Cgale_proqu%3EA762480862%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2857017702&rft_id=info:pmid/&rft_galeid=A762480862&rfr_iscdi=true |