Overlapping Coalition Formation Game via Multi-Objective Optimization for Crowdsensing Task Allocation

With the rapid development of sensor technology and mobile services, the service model of mobile crowd sensing (MCS) has emerged. In this model, user groups perceive data through carried mobile terminal devices, thereby completing large-scale and distributed tasks. Task allocation is an important li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2023-08, Vol.12 (16), p.3454
Hauptverfasser: Fu, Yanming, Liu, Xiao, Han, Weigeng, Lu, Shenglin, Chen, Jiayuan, Tang, Tianbing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page 3454
container_title Electronics (Basel)
container_volume 12
creator Fu, Yanming
Liu, Xiao
Han, Weigeng
Lu, Shenglin
Chen, Jiayuan
Tang, Tianbing
description With the rapid development of sensor technology and mobile services, the service model of mobile crowd sensing (MCS) has emerged. In this model, user groups perceive data through carried mobile terminal devices, thereby completing large-scale and distributed tasks. Task allocation is an important link in MCS, but the interests of task publishers, users, and platforms often conflict. Therefore, to improve the performance of MCS task allocation, this study proposes a repeated overlapping coalition formation game MCS task allocation scheme based on multiple-objective particle swarm optimization (ROCG-MOPSO). The overlapping coalition formation (OCF) game model is used to describe the resource allocation relationship between users and tasks, and design two game strategies, allowing users to form overlapping coalitions for different sensing tasks. Multi-objective optimization, on the other hand, is a strategy that considers multiple interests simultaneously in optimization problems. Therefore, we use the multi-objective particle swarm optimization algorithm to adjust the parameters of the OCF to better balance the interests of task publishers, users, and platforms and thus obtain a more optimal task allocation scheme. To verify the effectiveness of ROCG-MOPSO, we conduct experiments on a dataset and compare the results with the schemes in the related literature. The experimental results show that our ROCG-MOPSO performs superiorly on key performance indicators such as average user revenue, platform revenue, task completion rate, and user average surplus resources.
doi_str_mv 10.3390/electronics12163454
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2857011820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762467912</galeid><sourcerecordid>A762467912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-75c4b2905be9187dec10a314c9faac4b827de1a82adf08c6c2426c9e646b94293</originalsourceid><addsrcrecordid>eNptkT1PwzAQhi0EElXpL2CJxJzirzjxWEW0IBVlKXPkOHbl4sTBTovg1-M2DAzcDffqvefuhgPgHsElIRw-Kqvk6F1vZEAYMUIzegVmGOY85Zjj6z_6FixCOMAYHJGCwBnQ1Ul5K4bB9PukdMKa0bg-WTvfiYvaiE4lJyOS16MdTVo1h3jNnFRSDaPpzPdEaeeT0rvPNqg-nFftRHhPVtY6eQHuwI0WNqjFb52Dt_XTrnxOt9XmpVxtU0kYGtM8k7TBHGaN4qjIWyURFARRybUQsVXg6CFRYNFqWEgmMcVMcsUoazjFnMzBw7R38O7jqMJYH9zR9_FkjYsshwgVGEZqOVF7YVVteu1GL2TMVnVGul5pE_1VzjBlOUc4DpBpQHoXgle6HrzphP-qEazPT6j_eQL5AS_EfqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857011820</pqid></control><display><type>article</type><title>Overlapping Coalition Formation Game via Multi-Objective Optimization for Crowdsensing Task Allocation</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Fu, Yanming ; Liu, Xiao ; Han, Weigeng ; Lu, Shenglin ; Chen, Jiayuan ; Tang, Tianbing</creator><creatorcontrib>Fu, Yanming ; Liu, Xiao ; Han, Weigeng ; Lu, Shenglin ; Chen, Jiayuan ; Tang, Tianbing</creatorcontrib><description>With the rapid development of sensor technology and mobile services, the service model of mobile crowd sensing (MCS) has emerged. In this model, user groups perceive data through carried mobile terminal devices, thereby completing large-scale and distributed tasks. Task allocation is an important link in MCS, but the interests of task publishers, users, and platforms often conflict. Therefore, to improve the performance of MCS task allocation, this study proposes a repeated overlapping coalition formation game MCS task allocation scheme based on multiple-objective particle swarm optimization (ROCG-MOPSO). The overlapping coalition formation (OCF) game model is used to describe the resource allocation relationship between users and tasks, and design two game strategies, allowing users to form overlapping coalitions for different sensing tasks. Multi-objective optimization, on the other hand, is a strategy that considers multiple interests simultaneously in optimization problems. Therefore, we use the multi-objective particle swarm optimization algorithm to adjust the parameters of the OCF to better balance the interests of task publishers, users, and platforms and thus obtain a more optimal task allocation scheme. To verify the effectiveness of ROCG-MOPSO, we conduct experiments on a dataset and compare the results with the schemes in the related literature. The experimental results show that our ROCG-MOPSO performs superiorly on key performance indicators such as average user revenue, platform revenue, task completion rate, and user average surplus resources.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12163454</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Cellular telephones ; Cooperation ; Costs ; Crowds ; Energy consumption ; Game theory ; Global positioning systems ; GPS ; Mathematical optimization ; Methods ; Mobile devices ; Multiple objective analysis ; Optimization ; Particle swarm optimization ; Performance enhancement ; Platforms ; Research methodology ; Resource allocation ; Revenue ; Smartphones ; User groups</subject><ispartof>Electronics (Basel), 2023-08, Vol.12 (16), p.3454</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-75c4b2905be9187dec10a314c9faac4b827de1a82adf08c6c2426c9e646b94293</citedby><cites>FETCH-LOGICAL-c361t-75c4b2905be9187dec10a314c9faac4b827de1a82adf08c6c2426c9e646b94293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Fu, Yanming</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Han, Weigeng</creatorcontrib><creatorcontrib>Lu, Shenglin</creatorcontrib><creatorcontrib>Chen, Jiayuan</creatorcontrib><creatorcontrib>Tang, Tianbing</creatorcontrib><title>Overlapping Coalition Formation Game via Multi-Objective Optimization for Crowdsensing Task Allocation</title><title>Electronics (Basel)</title><description>With the rapid development of sensor technology and mobile services, the service model of mobile crowd sensing (MCS) has emerged. In this model, user groups perceive data through carried mobile terminal devices, thereby completing large-scale and distributed tasks. Task allocation is an important link in MCS, but the interests of task publishers, users, and platforms often conflict. Therefore, to improve the performance of MCS task allocation, this study proposes a repeated overlapping coalition formation game MCS task allocation scheme based on multiple-objective particle swarm optimization (ROCG-MOPSO). The overlapping coalition formation (OCF) game model is used to describe the resource allocation relationship between users and tasks, and design two game strategies, allowing users to form overlapping coalitions for different sensing tasks. Multi-objective optimization, on the other hand, is a strategy that considers multiple interests simultaneously in optimization problems. Therefore, we use the multi-objective particle swarm optimization algorithm to adjust the parameters of the OCF to better balance the interests of task publishers, users, and platforms and thus obtain a more optimal task allocation scheme. To verify the effectiveness of ROCG-MOPSO, we conduct experiments on a dataset and compare the results with the schemes in the related literature. The experimental results show that our ROCG-MOPSO performs superiorly on key performance indicators such as average user revenue, platform revenue, task completion rate, and user average surplus resources.</description><subject>Algorithms</subject><subject>Cellular telephones</subject><subject>Cooperation</subject><subject>Costs</subject><subject>Crowds</subject><subject>Energy consumption</subject><subject>Game theory</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Mathematical optimization</subject><subject>Methods</subject><subject>Mobile devices</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Performance enhancement</subject><subject>Platforms</subject><subject>Research methodology</subject><subject>Resource allocation</subject><subject>Revenue</subject><subject>Smartphones</subject><subject>User groups</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkT1PwzAQhi0EElXpL2CJxJzirzjxWEW0IBVlKXPkOHbl4sTBTovg1-M2DAzcDffqvefuhgPgHsElIRw-Kqvk6F1vZEAYMUIzegVmGOY85Zjj6z_6FixCOMAYHJGCwBnQ1Ul5K4bB9PukdMKa0bg-WTvfiYvaiE4lJyOS16MdTVo1h3jNnFRSDaPpzPdEaeeT0rvPNqg-nFftRHhPVtY6eQHuwI0WNqjFb52Dt_XTrnxOt9XmpVxtU0kYGtM8k7TBHGaN4qjIWyURFARRybUQsVXg6CFRYNFqWEgmMcVMcsUoazjFnMzBw7R38O7jqMJYH9zR9_FkjYsshwgVGEZqOVF7YVVteu1GL2TMVnVGul5pE_1VzjBlOUc4DpBpQHoXgle6HrzphP-qEazPT6j_eQL5AS_EfqA</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Fu, Yanming</creator><creator>Liu, Xiao</creator><creator>Han, Weigeng</creator><creator>Lu, Shenglin</creator><creator>Chen, Jiayuan</creator><creator>Tang, Tianbing</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230801</creationdate><title>Overlapping Coalition Formation Game via Multi-Objective Optimization for Crowdsensing Task Allocation</title><author>Fu, Yanming ; Liu, Xiao ; Han, Weigeng ; Lu, Shenglin ; Chen, Jiayuan ; Tang, Tianbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-75c4b2905be9187dec10a314c9faac4b827de1a82adf08c6c2426c9e646b94293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Cellular telephones</topic><topic>Cooperation</topic><topic>Costs</topic><topic>Crowds</topic><topic>Energy consumption</topic><topic>Game theory</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Mathematical optimization</topic><topic>Methods</topic><topic>Mobile devices</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Performance enhancement</topic><topic>Platforms</topic><topic>Research methodology</topic><topic>Resource allocation</topic><topic>Revenue</topic><topic>Smartphones</topic><topic>User groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Yanming</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Han, Weigeng</creatorcontrib><creatorcontrib>Lu, Shenglin</creatorcontrib><creatorcontrib>Chen, Jiayuan</creatorcontrib><creatorcontrib>Tang, Tianbing</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Yanming</au><au>Liu, Xiao</au><au>Han, Weigeng</au><au>Lu, Shenglin</au><au>Chen, Jiayuan</au><au>Tang, Tianbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overlapping Coalition Formation Game via Multi-Objective Optimization for Crowdsensing Task Allocation</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>12</volume><issue>16</issue><spage>3454</spage><pages>3454-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>With the rapid development of sensor technology and mobile services, the service model of mobile crowd sensing (MCS) has emerged. In this model, user groups perceive data through carried mobile terminal devices, thereby completing large-scale and distributed tasks. Task allocation is an important link in MCS, but the interests of task publishers, users, and platforms often conflict. Therefore, to improve the performance of MCS task allocation, this study proposes a repeated overlapping coalition formation game MCS task allocation scheme based on multiple-objective particle swarm optimization (ROCG-MOPSO). The overlapping coalition formation (OCF) game model is used to describe the resource allocation relationship between users and tasks, and design two game strategies, allowing users to form overlapping coalitions for different sensing tasks. Multi-objective optimization, on the other hand, is a strategy that considers multiple interests simultaneously in optimization problems. Therefore, we use the multi-objective particle swarm optimization algorithm to adjust the parameters of the OCF to better balance the interests of task publishers, users, and platforms and thus obtain a more optimal task allocation scheme. To verify the effectiveness of ROCG-MOPSO, we conduct experiments on a dataset and compare the results with the schemes in the related literature. The experimental results show that our ROCG-MOPSO performs superiorly on key performance indicators such as average user revenue, platform revenue, task completion rate, and user average surplus resources.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12163454</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2023-08, Vol.12 (16), p.3454
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2857011820
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Algorithms
Cellular telephones
Cooperation
Costs
Crowds
Energy consumption
Game theory
Global positioning systems
GPS
Mathematical optimization
Methods
Mobile devices
Multiple objective analysis
Optimization
Particle swarm optimization
Performance enhancement
Platforms
Research methodology
Resource allocation
Revenue
Smartphones
User groups
title Overlapping Coalition Formation Game via Multi-Objective Optimization for Crowdsensing Task Allocation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A30%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overlapping%20Coalition%20Formation%20Game%20via%20Multi-Objective%20Optimization%20for%20Crowdsensing%20Task%20Allocation&rft.jtitle=Electronics%20(Basel)&rft.au=Fu,%20Yanming&rft.date=2023-08-01&rft.volume=12&rft.issue=16&rft.spage=3454&rft.pages=3454-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12163454&rft_dat=%3Cgale_proqu%3EA762467912%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2857011820&rft_id=info:pmid/&rft_galeid=A762467912&rfr_iscdi=true