Recent Advances in the Use of eXplainable Artificial Intelligence Techniques for Wind Turbine Systems Condition Monitoring
There is a good probability that wind turbines will emerge as one of the predominant technologies for electricity production in the upcoming decades [...]
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2023-08, Vol.12 (16), p.3509 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | 3509 |
container_title | Electronics (Basel) |
container_volume | 12 |
creator | Astolfi, Davide De Caro, Fabrizio Vaccaro, Alfredo |
description | There is a good probability that wind turbines will emerge as one of the predominant technologies for electricity production in the upcoming decades [...] |
doi_str_mv | 10.3390/electronics12163509 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2857011783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762480870</galeid><sourcerecordid>A762480870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-7b59dca805facd3250d4475cd2e6e755864aa67e052cc8bc2ca0262fa4c1d6373</originalsourceid><addsrcrecordid>eNptkU1rGzEQhpfSQIPrX5CLoGen-litdo_G9CPgEGgdktsij0bOhLXkSnLB-fVRcA85dOYww_A-My9M01wJfq3UwL_ihFBSDARZSNEpzYcPzaXkZlgMcpAf3_WfmnnOz7zGIFSv-GXz8gsBQ2FL99cGwMwosPKE7D4ji57h42GyFOx2QrZMhTwB2YndhILTRDusCNsgPAX6c6ywj4k9UHBsc0xbCsh-n3LBfWarGBwVioHdVqMlJgq7z82Ft1PG-b86a-6_f9usfi7Wdz9uVsv1AlQnysJs9eDA9lx7C05JzV3bGg1OYodG675rre0Mci0B-i1IsFx20tsWhOuUUbPmy3nvIcU3l2V8jscU6slR9tpwIUyvqur6rNrZCUcKPpZkoabDPUEM6KnOl6aTbc97wyugzgCkmHNCPx4S7W06jYKPb48Z__MY9QoFoIWd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857011783</pqid></control><display><type>article</type><title>Recent Advances in the Use of eXplainable Artificial Intelligence Techniques for Wind Turbine Systems Condition Monitoring</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Astolfi, Davide ; De Caro, Fabrizio ; Vaccaro, Alfredo</creator><creatorcontrib>Astolfi, Davide ; De Caro, Fabrizio ; Vaccaro, Alfredo</creatorcontrib><description>There is a good probability that wind turbines will emerge as one of the predominant technologies for electricity production in the upcoming decades [...]</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12163509</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Air-turbines ; Artificial intelligence ; Condition monitoring ; Electricity ; Explainable artificial intelligence ; Identity formation ; Maintenance and repair ; Temperature ; Turbines ; Variables ; Wind farms ; Wind power ; Wind turbines</subject><ispartof>Electronics (Basel), 2023-08, Vol.12 (16), p.3509</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-7b59dca805facd3250d4475cd2e6e755864aa67e052cc8bc2ca0262fa4c1d6373</citedby><cites>FETCH-LOGICAL-c361t-7b59dca805facd3250d4475cd2e6e755864aa67e052cc8bc2ca0262fa4c1d6373</cites><orcidid>0000-0001-7256-2705 ; 0000-0001-5577-7544</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Astolfi, Davide</creatorcontrib><creatorcontrib>De Caro, Fabrizio</creatorcontrib><creatorcontrib>Vaccaro, Alfredo</creatorcontrib><title>Recent Advances in the Use of eXplainable Artificial Intelligence Techniques for Wind Turbine Systems Condition Monitoring</title><title>Electronics (Basel)</title><description>There is a good probability that wind turbines will emerge as one of the predominant technologies for electricity production in the upcoming decades [...]</description><subject>Air-turbines</subject><subject>Artificial intelligence</subject><subject>Condition monitoring</subject><subject>Electricity</subject><subject>Explainable artificial intelligence</subject><subject>Identity formation</subject><subject>Maintenance and repair</subject><subject>Temperature</subject><subject>Turbines</subject><subject>Variables</subject><subject>Wind farms</subject><subject>Wind power</subject><subject>Wind turbines</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkU1rGzEQhpfSQIPrX5CLoGen-litdo_G9CPgEGgdktsij0bOhLXkSnLB-fVRcA85dOYww_A-My9M01wJfq3UwL_ihFBSDARZSNEpzYcPzaXkZlgMcpAf3_WfmnnOz7zGIFSv-GXz8gsBQ2FL99cGwMwosPKE7D4ji57h42GyFOx2QrZMhTwB2YndhILTRDusCNsgPAX6c6ywj4k9UHBsc0xbCsh-n3LBfWarGBwVioHdVqMlJgq7z82Ft1PG-b86a-6_f9usfi7Wdz9uVsv1AlQnysJs9eDA9lx7C05JzV3bGg1OYodG675rre0Mci0B-i1IsFx20tsWhOuUUbPmy3nvIcU3l2V8jscU6slR9tpwIUyvqur6rNrZCUcKPpZkoabDPUEM6KnOl6aTbc97wyugzgCkmHNCPx4S7W06jYKPb48Z__MY9QoFoIWd</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Astolfi, Davide</creator><creator>De Caro, Fabrizio</creator><creator>Vaccaro, Alfredo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-7256-2705</orcidid><orcidid>https://orcid.org/0000-0001-5577-7544</orcidid></search><sort><creationdate>20230801</creationdate><title>Recent Advances in the Use of eXplainable Artificial Intelligence Techniques for Wind Turbine Systems Condition Monitoring</title><author>Astolfi, Davide ; De Caro, Fabrizio ; Vaccaro, Alfredo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-7b59dca805facd3250d4475cd2e6e755864aa67e052cc8bc2ca0262fa4c1d6373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air-turbines</topic><topic>Artificial intelligence</topic><topic>Condition monitoring</topic><topic>Electricity</topic><topic>Explainable artificial intelligence</topic><topic>Identity formation</topic><topic>Maintenance and repair</topic><topic>Temperature</topic><topic>Turbines</topic><topic>Variables</topic><topic>Wind farms</topic><topic>Wind power</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Astolfi, Davide</creatorcontrib><creatorcontrib>De Caro, Fabrizio</creatorcontrib><creatorcontrib>Vaccaro, Alfredo</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Astolfi, Davide</au><au>De Caro, Fabrizio</au><au>Vaccaro, Alfredo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent Advances in the Use of eXplainable Artificial Intelligence Techniques for Wind Turbine Systems Condition Monitoring</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>12</volume><issue>16</issue><spage>3509</spage><pages>3509-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>There is a good probability that wind turbines will emerge as one of the predominant technologies for electricity production in the upcoming decades [...]</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12163509</doi><orcidid>https://orcid.org/0000-0001-7256-2705</orcidid><orcidid>https://orcid.org/0000-0001-5577-7544</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2023-08, Vol.12 (16), p.3509 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2857011783 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Air-turbines Artificial intelligence Condition monitoring Electricity Explainable artificial intelligence Identity formation Maintenance and repair Temperature Turbines Variables Wind farms Wind power Wind turbines |
title | Recent Advances in the Use of eXplainable Artificial Intelligence Techniques for Wind Turbine Systems Condition Monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T16%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20Advances%20in%20the%20Use%20of%20eXplainable%20Artificial%20Intelligence%20Techniques%20for%20Wind%20Turbine%20Systems%20Condition%20Monitoring&rft.jtitle=Electronics%20(Basel)&rft.au=Astolfi,%20Davide&rft.date=2023-08-01&rft.volume=12&rft.issue=16&rft.spage=3509&rft.pages=3509-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12163509&rft_dat=%3Cgale_proqu%3EA762480870%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2857011783&rft_id=info:pmid/&rft_galeid=A762480870&rfr_iscdi=true |