On the Monopolist Problem and Its Dual
In this paper, we study the functional that arises in numerous economic applications, in particular, in the monopolist problem. A special feature of these problems is that the domains of such functionals are nonclassical (in our case, increasing convex functions). We use an appropriate minimax theor...
Gespeichert in:
Veröffentlicht in: | Mathematical Notes 2023-08, Vol.114 (1-2), p.147-158 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 158 |
---|---|
container_issue | 1-2 |
container_start_page | 147 |
container_title | Mathematical Notes |
container_volume | 114 |
creator | Bogachev, T. V. Kolesnikov, A. V. |
description | In this paper, we study the functional
that arises in numerous economic applications, in particular, in the monopolist problem. A special feature of these problems is that the domains of such functionals are nonclassical (in our case, increasing convex functions). We use an appropriate minimax theorem to prove the duality relation for
. In particular, an important corollary is obtained stating that the dual functional (defined on a space of measures and known as the “Beckmann functional) attains its minimum. The present approach also provides simpler proofs of some previously known results. |
doi_str_mv | 10.1134/S0001434623070167 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2856980473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2856980473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-b6ce4c9c773fb2ce46a0fa057464d56e18820a23651866f6349abf1b857fdbb53</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt_gLeA4G01k49JepT6VahUUM9Lsk20ZbtZk92D_71bVvAgnmaG93tv4BFyDuwKQMjrF8YYSCGRC6YZoD4gE1BaFMZoPCSTvVzs9WNykvN2uACBTcjlqqHdh6dPsYltrDe5o88putrvqG3WdNFletvb-pQcBVtnf_Yzp-Tt_u51_lgsVw-L-c2yqDiarnBYeVnNKq1FcHzY0bJgmdIS5VqhB2M4s1ygAoMYUMiZdQGcUTqsnVNiSi7G3DbFz97nrtzGPjXDy5IbhTPDpBYDBSNVpZhz8qFs02Zn01cJrNzXUf6pY_Dw0ZMHtnn36Tf5f9M3CA1eeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2856980473</pqid></control><display><type>article</type><title>On the Monopolist Problem and Its Dual</title><source>SpringerNature Journals</source><creator>Bogachev, T. V. ; Kolesnikov, A. V.</creator><creatorcontrib>Bogachev, T. V. ; Kolesnikov, A. V.</creatorcontrib><description>In this paper, we study the functional
that arises in numerous economic applications, in particular, in the monopolist problem. A special feature of these problems is that the domains of such functionals are nonclassical (in our case, increasing convex functions). We use an appropriate minimax theorem to prove the duality relation for
. In particular, an important corollary is obtained stating that the dual functional (defined on a space of measures and known as the “Beckmann functional) attains its minimum. The present approach also provides simpler proofs of some previously known results.</description><identifier>ISSN: 0001-4346</identifier><identifier>ISSN: 1067-9073</identifier><identifier>EISSN: 1573-8876</identifier><identifier>DOI: 10.1134/S0001434623070167</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Functionals ; Mathematics ; Mathematics and Statistics ; Minimax technique</subject><ispartof>Mathematical Notes, 2023-08, Vol.114 (1-2), p.147-158</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-b6ce4c9c773fb2ce46a0fa057464d56e18820a23651866f6349abf1b857fdbb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0001434623070167$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0001434623070167$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bogachev, T. V.</creatorcontrib><creatorcontrib>Kolesnikov, A. V.</creatorcontrib><title>On the Monopolist Problem and Its Dual</title><title>Mathematical Notes</title><addtitle>Math Notes</addtitle><description>In this paper, we study the functional
that arises in numerous economic applications, in particular, in the monopolist problem. A special feature of these problems is that the domains of such functionals are nonclassical (in our case, increasing convex functions). We use an appropriate minimax theorem to prove the duality relation for
. In particular, an important corollary is obtained stating that the dual functional (defined on a space of measures and known as the “Beckmann functional) attains its minimum. The present approach also provides simpler proofs of some previously known results.</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Functionals</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Minimax technique</subject><issn>0001-4346</issn><issn>1067-9073</issn><issn>1573-8876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKt_gLeA4G01k49JepT6VahUUM9Lsk20ZbtZk92D_71bVvAgnmaG93tv4BFyDuwKQMjrF8YYSCGRC6YZoD4gE1BaFMZoPCSTvVzs9WNykvN2uACBTcjlqqHdh6dPsYltrDe5o88putrvqG3WdNFletvb-pQcBVtnf_Yzp-Tt_u51_lgsVw-L-c2yqDiarnBYeVnNKq1FcHzY0bJgmdIS5VqhB2M4s1ygAoMYUMiZdQGcUTqsnVNiSi7G3DbFz97nrtzGPjXDy5IbhTPDpBYDBSNVpZhz8qFs02Zn01cJrNzXUf6pY_Dw0ZMHtnn36Tf5f9M3CA1eeQ</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Bogachev, T. V.</creator><creator>Kolesnikov, A. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230801</creationdate><title>On the Monopolist Problem and Its Dual</title><author>Bogachev, T. V. ; Kolesnikov, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-b6ce4c9c773fb2ce46a0fa057464d56e18820a23651866f6349abf1b857fdbb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Functionals</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Minimax technique</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bogachev, T. V.</creatorcontrib><creatorcontrib>Kolesnikov, A. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical Notes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bogachev, T. V.</au><au>Kolesnikov, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Monopolist Problem and Its Dual</atitle><jtitle>Mathematical Notes</jtitle><stitle>Math Notes</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>114</volume><issue>1-2</issue><spage>147</spage><epage>158</epage><pages>147-158</pages><issn>0001-4346</issn><issn>1067-9073</issn><eissn>1573-8876</eissn><abstract>In this paper, we study the functional
that arises in numerous economic applications, in particular, in the monopolist problem. A special feature of these problems is that the domains of such functionals are nonclassical (in our case, increasing convex functions). We use an appropriate minimax theorem to prove the duality relation for
. In particular, an important corollary is obtained stating that the dual functional (defined on a space of measures and known as the “Beckmann functional) attains its minimum. The present approach also provides simpler proofs of some previously known results.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0001434623070167</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4346 |
ispartof | Mathematical Notes, 2023-08, Vol.114 (1-2), p.147-158 |
issn | 0001-4346 1067-9073 1573-8876 |
language | eng |
recordid | cdi_proquest_journals_2856980473 |
source | SpringerNature Journals |
subjects | 14/34 639/766/189 639/766/530 639/766/747 Functionals Mathematics Mathematics and Statistics Minimax technique |
title | On the Monopolist Problem and Its Dual |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A06%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Monopolist%20Problem%20and%20Its%20Dual&rft.jtitle=Mathematical%20Notes&rft.au=Bogachev,%20T.%20V.&rft.date=2023-08-01&rft.volume=114&rft.issue=1-2&rft.spage=147&rft.epage=158&rft.pages=147-158&rft.issn=0001-4346&rft.eissn=1573-8876&rft_id=info:doi/10.1134/S0001434623070167&rft_dat=%3Cproquest_cross%3E2856980473%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2856980473&rft_id=info:pmid/&rfr_iscdi=true |