On the Monopolist Problem and Its Dual

In this paper, we study the functional that arises in numerous economic applications, in particular, in the monopolist problem. A special feature of these problems is that the domains of such functionals are nonclassical (in our case, increasing convex functions). We use an appropriate minimax theor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Notes 2023-08, Vol.114 (1-2), p.147-158
Hauptverfasser: Bogachev, T. V., Kolesnikov, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 158
container_issue 1-2
container_start_page 147
container_title Mathematical Notes
container_volume 114
creator Bogachev, T. V.
Kolesnikov, A. V.
description In this paper, we study the functional that arises in numerous economic applications, in particular, in the monopolist problem. A special feature of these problems is that the domains of such functionals are nonclassical (in our case, increasing convex functions). We use an appropriate minimax theorem to prove the duality relation for . In particular, an important corollary is obtained stating that the dual functional (defined on a space of measures and known as the “Beckmann functional) attains its minimum. The present approach also provides simpler proofs of some previously known results.
doi_str_mv 10.1134/S0001434623070167
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2856980473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2856980473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-b6ce4c9c773fb2ce46a0fa057464d56e18820a23651866f6349abf1b857fdbb53</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt_gLeA4G01k49JepT6VahUUM9Lsk20ZbtZk92D_71bVvAgnmaG93tv4BFyDuwKQMjrF8YYSCGRC6YZoD4gE1BaFMZoPCSTvVzs9WNykvN2uACBTcjlqqHdh6dPsYltrDe5o88putrvqG3WdNFletvb-pQcBVtnf_Yzp-Tt_u51_lgsVw-L-c2yqDiarnBYeVnNKq1FcHzY0bJgmdIS5VqhB2M4s1ygAoMYUMiZdQGcUTqsnVNiSi7G3DbFz97nrtzGPjXDy5IbhTPDpBYDBSNVpZhz8qFs02Zn01cJrNzXUf6pY_Dw0ZMHtnn36Tf5f9M3CA1eeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2856980473</pqid></control><display><type>article</type><title>On the Monopolist Problem and Its Dual</title><source>SpringerNature Journals</source><creator>Bogachev, T. V. ; Kolesnikov, A. V.</creator><creatorcontrib>Bogachev, T. V. ; Kolesnikov, A. V.</creatorcontrib><description>In this paper, we study the functional that arises in numerous economic applications, in particular, in the monopolist problem. A special feature of these problems is that the domains of such functionals are nonclassical (in our case, increasing convex functions). We use an appropriate minimax theorem to prove the duality relation for . In particular, an important corollary is obtained stating that the dual functional (defined on a space of measures and known as the “Beckmann functional) attains its minimum. The present approach also provides simpler proofs of some previously known results.</description><identifier>ISSN: 0001-4346</identifier><identifier>ISSN: 1067-9073</identifier><identifier>EISSN: 1573-8876</identifier><identifier>DOI: 10.1134/S0001434623070167</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Functionals ; Mathematics ; Mathematics and Statistics ; Minimax technique</subject><ispartof>Mathematical Notes, 2023-08, Vol.114 (1-2), p.147-158</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-b6ce4c9c773fb2ce46a0fa057464d56e18820a23651866f6349abf1b857fdbb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0001434623070167$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0001434623070167$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bogachev, T. V.</creatorcontrib><creatorcontrib>Kolesnikov, A. V.</creatorcontrib><title>On the Monopolist Problem and Its Dual</title><title>Mathematical Notes</title><addtitle>Math Notes</addtitle><description>In this paper, we study the functional that arises in numerous economic applications, in particular, in the monopolist problem. A special feature of these problems is that the domains of such functionals are nonclassical (in our case, increasing convex functions). We use an appropriate minimax theorem to prove the duality relation for . In particular, an important corollary is obtained stating that the dual functional (defined on a space of measures and known as the “Beckmann functional) attains its minimum. The present approach also provides simpler proofs of some previously known results.</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Functionals</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Minimax technique</subject><issn>0001-4346</issn><issn>1067-9073</issn><issn>1573-8876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKt_gLeA4G01k49JepT6VahUUM9Lsk20ZbtZk92D_71bVvAgnmaG93tv4BFyDuwKQMjrF8YYSCGRC6YZoD4gE1BaFMZoPCSTvVzs9WNykvN2uACBTcjlqqHdh6dPsYltrDe5o88putrvqG3WdNFletvb-pQcBVtnf_Yzp-Tt_u51_lgsVw-L-c2yqDiarnBYeVnNKq1FcHzY0bJgmdIS5VqhB2M4s1ygAoMYUMiZdQGcUTqsnVNiSi7G3DbFz97nrtzGPjXDy5IbhTPDpBYDBSNVpZhz8qFs02Zn01cJrNzXUf6pY_Dw0ZMHtnn36Tf5f9M3CA1eeQ</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Bogachev, T. V.</creator><creator>Kolesnikov, A. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230801</creationdate><title>On the Monopolist Problem and Its Dual</title><author>Bogachev, T. V. ; Kolesnikov, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-b6ce4c9c773fb2ce46a0fa057464d56e18820a23651866f6349abf1b857fdbb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Functionals</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Minimax technique</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bogachev, T. V.</creatorcontrib><creatorcontrib>Kolesnikov, A. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical Notes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bogachev, T. V.</au><au>Kolesnikov, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Monopolist Problem and Its Dual</atitle><jtitle>Mathematical Notes</jtitle><stitle>Math Notes</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>114</volume><issue>1-2</issue><spage>147</spage><epage>158</epage><pages>147-158</pages><issn>0001-4346</issn><issn>1067-9073</issn><eissn>1573-8876</eissn><abstract>In this paper, we study the functional that arises in numerous economic applications, in particular, in the monopolist problem. A special feature of these problems is that the domains of such functionals are nonclassical (in our case, increasing convex functions). We use an appropriate minimax theorem to prove the duality relation for . In particular, an important corollary is obtained stating that the dual functional (defined on a space of measures and known as the “Beckmann functional) attains its minimum. The present approach also provides simpler proofs of some previously known results.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0001434623070167</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4346
ispartof Mathematical Notes, 2023-08, Vol.114 (1-2), p.147-158
issn 0001-4346
1067-9073
1573-8876
language eng
recordid cdi_proquest_journals_2856980473
source SpringerNature Journals
subjects 14/34
639/766/189
639/766/530
639/766/747
Functionals
Mathematics
Mathematics and Statistics
Minimax technique
title On the Monopolist Problem and Its Dual
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A06%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Monopolist%20Problem%20and%20Its%20Dual&rft.jtitle=Mathematical%20Notes&rft.au=Bogachev,%20T.%20V.&rft.date=2023-08-01&rft.volume=114&rft.issue=1-2&rft.spage=147&rft.epage=158&rft.pages=147-158&rft.issn=0001-4346&rft.eissn=1573-8876&rft_id=info:doi/10.1134/S0001434623070167&rft_dat=%3Cproquest_cross%3E2856980473%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2856980473&rft_id=info:pmid/&rfr_iscdi=true